

Natural Computing Series
Series Editors: G. Rozenberg
Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink

Leiden Center for Natural Computing

Advisory Board: S. Amari G. Brassard K.A. De Jong
C.C.A.M. Gielen T. Head L. Kari L. Landweber T. Martinetz
Z. Michalewicz M.C. Mozer E. Oja G. Paun J. Reif H. Rubin
A. Salomaa M. Schoenauer H.-P. Schwefel C. Torras
D. Whitley E. Winfree J.M. Zurada

°

C C
N

Anthony Brabazon · Michael O’Neill

123

Biologically Inspired
Algorithms for Financial
Modelling

With 92 Figures and 39 Tables

Library of Congress Control Number: 2005936099

ACM Computing Classification (1998): F.1, F.2, I.2.1, I.2.8, I.6, J.1, J.4

ISBN-10 3-540-26252-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26252-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer. Violations are liable for prosecution under the German
Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover Design: KünkelLopka, Werbeagentur, Heidelberg
Typesetting: by the Authors
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Printed on acid-free paper 45/3142/YL – 5 4 3 2 1 0

Authors
Dr. Anthony Brabazon

University College Dublin
Belfield, Dublin 4
Ireland
anthony.brabazon@ucd.ie

Dr. Michael O’Neill

University College Dublin
Belfield, Dublin 4
Ireland

Series Editors
G. Rozenberg (Managing Editor)

rozenber@liacs.nl

Th. Bäck, J.N. Kok, H.P. Spaink

Leiden Institute of Advanced
Computer Science
Leiden University
Niels Bohrweg 1
2333 CA Leiden, The Netherlands

A.E. Eiben

Vrije Universiteit Amsterdam
The Netherlands

To Maria

Tony

To Gráinne

Michael

Preface

The field of biologically inspired computing has advanced rapidly over the past
decade. One offshoot of this progress has been the development of a large fam-
ily of biologically inspired algorithms. Broadly speaking, biologically inspired
algorithms draw metaphorical inspiration from diverse sources, including the
operation of biological neurons, processes of evolution, models of social inter-
action amongst organisms, and natural immune systems, in order to develop
tools for solving real-world problems. This book provides an introduction to
a broad range of biologically inspired algorithms and illustrates how they can
be applied for financial modelling using a series of case studies. These cases
include the modelling of financial markets, the development of financial trad-
ing systems, the creation of solvency prediction systems, and the creation of
credit rating models. In this book particular emphasis is placed on evolution-
ary methodologies, particularly the novel, powerful, modelling methodology
Grammatical Evolution. No prior knowledge of either biologically inspired
algorithms or financial modelling is assumed.

We hope that this book will help spark new ideas in the minds of readers
to encourage them to undertake their own work in financial modelling using
biologically inspired methodologies.

Anthony Brabazon
October 2005 Michael O’Neill

Acknowledgment

We would like to thank several people who contributed to the writing of this
book. Thomas Randles and David Brennan helped collect the corporate failure
and bond-rating datasets used in some of the case studies. We also thank John
McCallig, Sean McGarraghy and David Edelman for useful discussions on
several aspects of the material in the text which helped clarify our thoughts (all
errors are of course our responsibility!). In particular we would like to thank
a number of people who co-authored some of the case study chapters with
us: Ian Dempsey who co-authored the adaptive trading case study (Chapter
14); Peter Keenan, Katrina Meagher and Edward Carty who were co-authors
of the intra-day case study (Chapter 15); Yue Xi and Qiang Han who were
co-authors of the corporate failure ant-model case study (Chapter 18); and
Peter Keenan, Alice Delahunty and Denis O’Callaghan who contributed to the
AIS bond-rating chapter (Chapter 20). We also extend our thanks to Ronan
Nugent of Springer-Verlag for his encouragement of this project, and for his
advice on early drafts of the manuscript.

Anthony Brabazon
Michael O’Neill

Contents

1 Introduction . 1
1.1 Biologically Inspired Algorithms . 2

1.1.1 Artificial Neural Networks . 2
1.1.2 Evolutionary Computation . 2
1.1.3 Social Systems . 4
1.1.4 Artificial Immune Systems . 4

1.2 Computer Trading on Financial Markets 4
1.3 Challenges in the Modelling of Financial Markets 5

1.3.1 Do Prices Follow a Random Walk? 6
1.3.2 Attack of the Anomalies . 7

1.4 Linear Models . 8
1.5 Structure of the Book . 10

Part I Methodologies

2 Neural Network Methodologies . 15
2.1 A Taxonomy of NNs . 15
2.2 The Multi Layer Perceptron . 16

2.2.1 Training an MLP . 20
2.2.2 Practical Issues in Training MLPs 23
2.2.3 Recurrent Networks . 28

2.3 Radial Basis Function Networks . 29
2.4 Self-organising Maps . 32

2.4.1 Implementing a SOM . 33
2.5 Summary . 35

3 Evolutionary Methodologies . 37
3.1 Genetic Algorithm . 37

3.1.1 Canonical GA . 40
3.1.2 Example of the GA . 41

XII Contents

3.1.3 Extending the Canonical GA . 43
3.1.4 Schema and Building Blocks . 48

3.2 Differential Evolution . 49
3.2.1 DE Algorithm . 49

3.3 Genetic Programming . 54
3.3.1 More Complex GP Architectures . 58

3.4 Combining EA and MLP Methodologies . 63
3.5 Applying EAs to Evolve Trading Rules . 68
3.6 Recent Developments in Evolutionary Computation 70
3.7 Summary . 71

4 Grammatical Evolution . 73
4.1 Grammatical Evolution . 73

4.1.1 Biological Analogy . 74
4.1.2 Mapping Process . 76
4.1.3 Mapping Example . 79

4.2 Mutation and Crossover in GE . 82
4.3 Recent Developments in GE . 84

4.3.1 Search Engine . 84
4.3.2 Meta-grammars . 85
4.3.3 πGE . 87
4.3.4 Applications and Alternative Grammars 87

4.4 Summary . 88

5 The Particle Swarm Model . 89
5.1 PSO Algorithm . 89

5.1.1 Constriction Coefficient Version of PSO 92
5.1.2 Parameter Settings for PSO . 93

5.2 Discrete PSO . 94
5.3 Comparing PSO and the GA. 94
5.4 MLP-Swarm Hybrids . 95
5.5 Grammatical Swarm . 95
5.6 Example of a Financial Application of PSO 96
5.7 Recent Developments in PSO . 96
5.8 Summary . 97

6 Ant Colony Models . 99
6.1 Ant-Foraging Models . 99

6.1.1 Ant-Foraging Algorithm . 100
6.2 A Financial Application of ACO. 104
6.3 Ant-Inspired Classification Algorithms . 105
6.4 Hybrid Ant Models . 105
6.5 Summary . 106

Contents XIII

7 Artificial Immune Systems . 107
7.1 Overview of Natural Immune Systems . 108

7.1.1 Innate vs Adaptive Immunity . 108
7.1.2 Components of the Immune System. 108

7.2 Designing Artificial Immune Algorithms . 113
7.2.1 Negative Selection Algorithm . 113
7.2.2 Clonal Expansion and Selection Algorithm. 114

7.3 Financial Application of the Negative Selection Algorithm 116
7.4 Summary . 118

Part II Model Development

8 Model Development Process . 121
8.1 Project Goals . 121

8.1.1 What to Forecast? . 121
8.1.2 What Performance Measure Is Appropriate? 123

8.2 Data Collection . 124
8.2.1 Trading Philosophy . 124
8.2.2 How Much Data Is Enough? . 128

8.3 Selecting and Preprocessing the Data . 130
8.3.1 Selection . 130
8.3.2 Preprocessing . 130

8.4 Postprocessing the Output . 134
8.4.1 Entry Strategy . 134
8.4.2 Exit Strategy . 134
8.4.3 Money Management . 135

8.5 Validating the System . 135
8.6 Implementation and Maintenance . 140
8.7 Summary . 142

9 Technical Analysis . 143
9.1 Technical Indicators . 144

9.1.1 Moving Average . 146
9.1.2 Momentum . 148
9.1.3 Breakout . 149
9.1.4 Stochastic Oscillators . 150
9.1.5 Volume Data . 152
9.1.6 Other Indicators . 153

9.2 Using Technical Indicators in a Trading System 154
9.3 Summary . 155

XIV Contents

Part III Case Studies

10 Overview of Case Studies . 159

11 Index Prediction Using MLPs . 161
11.1 Methodology . 162

11.1.1 Model Selection . 166
11.1.2 Model Stacking . 167

11.2 Results . 169
11.2.1 RMSE and Correlation . 169
11.2.2 Trading System . 171

11.3 Discussion . 172

12 Index Prediction Using a MLP-GA Hybrid 175
12.1 Methodology . 175

12.1.1 Model Construction . 176
12.2 Results . 178

12.2.1 MLP-GA . 179
12.2.2 Analysis of Weight Vectors . 180

12.3 Discussion . 182

13 Index Trading Using Grammatical Evolution 183
13.1 Methodology . 183

13.1.1 GE System Setup . 188
13.2 Results . 189
13.3 Discussion . 190

14 Adaptive Trading Using Grammatical Evolution 193
14.1 Introduction . 193
14.2 Methodology . 193

14.2.1 Moving Window. 194
14.2.2 Variable Position Trading . 194
14.2.3 Return Calculation . 195

14.3 Results . 196
14.3.1 Training Returns . 197
14.3.2 Out-of-Sample Returns . 199

14.4 Discussion . 201

15 Intra-day Trading Using Grammatical Evolution 203
15.1 Background . 203
15.2 Methodology . 204

15.2.1 Trading System . 206
15.2.2 GE System Setup . 207

15.3 Results . 208
15.4 Discussion . 210

Contents XV

16 Automatic Generation of Foreign Exchange Trading Rules . 211
16.1 Background . 211
16.2 Methodology . 212
16.3 Results . 214

16.3.1 US-STG . 216
16.3.2 US-Yen . 217
16.3.3 US-DM . 217

16.4 Discussion . 218

17 Corporate Failure Prediction Using Grammatical

Evolution . 219
17.1 Background . 220

17.1.1 Definition of Corporate Failure . 220
17.1.2 Explanatory Variables . 221

17.2 Methodology . 222
17.2.1 GE System Setup . 223
17.2.2 LDA Method . 224

17.3 Results . 224
17.3.1 Form of the Evolved Classifiers . 225

17.4 Discussion . 226

18 Corporate Failure Prediction Using an Ant Model 229
18.1 Background . 229
18.2 Methodology . 230

18.2.1 Ant System . 231
18.3 Results . 235
18.4 Discussion . 238

19 Bond Rating Using Grammatical Evolution 239
19.1 Background . 240

19.1.1 Rating Process . 240
19.2 Methodology . 241
19.3 Results . 243
19.4 Discussion . 247

20 Bond Rating Using AIS . 249
20.1 Methodology . 249
20.2 Results . 252
20.3 Discussion . 252

21 Wrap-up . 255

References . 257

Index . 271

1

Introduction

Over the last decade, a considerable literature on biologically inspired algo-
rithms (BIA) has emerged. These powerful algorithms can be used for pre-
diction and classification, and have clear application for use in financial mod-
elling and in the development of trading systems. Financial markets represent
a complex, ever-changing, environment in which a population of investors
are competing for profit. Biological entities have long inhabited such environ-
ments, and have competed for resources to ensure their survival. It is natural
to turn to algorithms which are inspired by biological processes to tackle the
task of survival in a financial jungle.

The primary objectives of this book are twofold: to provide readers with an
up-to-date introduction to a broad range of BIAs, and to illustrate by means
of a series of case studies how the algorithms can be applied for the purposes of
modelling financial markets, for the prediction of corporate failure, and for the
prediction of credit ratings. Although we cannot provide any guarantees that
these technologies provide an easy route to financial riches, we hope this book
will spark new ideas in the minds of readers to encourage them to undertake
their own work in the fascinating nexus of computer science and finance.

This book is aimed at two audiences: those in the finance community
who wish to learn about advances in biologically inspired computing and
how these advances can be applied to financial modelling; and those in the
computer science community who wish to gain insight into the domain of fi-
nancial modelling and trading system design. Strong emphasis is placed in
this book on evolutionary methodologies, particularly Grammatical Evolution
[174]. This book is also suitable for use on advanced undergraduate or post-
graduate courses, on quantitative finance or computational intelligence. No
prior knowledge of either BIAs or financial prediction is assumed.

2 1 Introduction

1.1 Biologically Inspired Algorithms

Biological systems are a notable source of inspiration for the design of optimi-
sation and classification algorithms, and all of the methodologies in this book
have their metaphorical roots in models of biological and social processes.
These processes are as diverse as the operation of the central nervous system,
biological evolution, the mapping of genes to proteins, the human immune
system, and models of social interaction amongst organisms. BIAs do not
seek to perfectly imitate the complex workings of these systems, rather they
draw metaphorical inspiration from them to create mathematical algorithms
which can be used in an attempt to solve hard, real-world problems, such as
modelling financial markets. Figure 1.1 provides a broad taxonomy of some of
the primary methodologies discussed in this book. A vast number of hybrid
models which combine elements from more than one of these methodologies
can also be constructed.

It is not possible to undertake a complete discussion of all of these in a sin-
gle text, and we concentrate on neural network and evolutionary algorithms,
while providing an introduction to BIA technologies drawn from social and
immune metaphors. A brief overview of some of these technologies is provided
in the following paragraphs, with a more detailed discussion of them being
provided in later chapters.

1.1.1 Artificial Neural Networks

Artificial neural networks (NNs) is a modelling methodology whose inspiration
arises loosely from a simplified model of the workings of the human brain.
Both learn from their environment and encode this learning by altering the
connections between individual processing elements, neurons in the case of
the human brain, nodes in the case of NNs. NNs can be used to construct
models for the purposes of prediction, classification and clustering. NNs are
a non-parametric modelling tool, as the model is developed directly from the
data.

1.1.2 Evolutionary Computation

Evolutionary algorithms draw inspiration from the processes of biological evo-
lution to breed solutions to problems. These problems may be as diverse as
determining the coefficients for a non-linear regression model, or determining
the components of a financial trading system. The algorithm commences by
creating an initial population of potential solutions, and these are iteratively
improved over many ‘generations’. In successive iterations of the algorithm,
fitness-based selection takes place within the population of solutions. Better
solutions are preferentially selected for survival into the next generation of
solutions, with diversity being introduced in the selected solutions in an at-
tempt to uncover even better solutions over multiple generations. BIAs that

1.1 Biologically Inspired Algorithms 3

Sy
st

em
s

A
nt

O
pt

im
is

at
io

n

St
ra

te
gi

es
E

vo
lu

ti
on

ar
y

P
ro

gr
am

m
in

g

E
vo

lu
ti

on
ar

y
C

om
pu

ta
ti

on

So
ci

al
Sy

st
em

s

N
eg

at
iv

e
Se

le
ct

io
n

C
lo

na
l

Se
le

ct
io

n

Im
m

un
e

C
ol

on
y

P
er

ce
pt

ro
ns

M
ul

ti
−l

ay
er

G
ra

m
m

at
ic

al
E

vo
lu

ti
on

G
en

et
ic

A
lg

or
it

hm
s

A
lg

or
it

hm
s

B
io

lo
gi

ca
lly

 I
ns

pi
re

d

G
ra

m
m

at
ic

al

G
ra

m
m

at
ic

al
E

vo
lu

ti
on

E
vo

lu
ti

on

G
ra

m
m

at
ic

al
D

if
fe

re
nt

ia
l

E
vo

lu
ti

on

G
en

et
ic

P
ro

gr
am

m
in

g

G
ra

m
m

at
ic

al
E

vo
lu

ti
on

Se
lf

O
rg

an
is

in
g

M
ap

s

P
ar

ti
cl

e
Sw

ar
m

O
pt

im
is

at
io

n

R
ad

ia
l B

as
is

F
un

ct
io

n
N

et
w

or
ks

D
if

fe
re

nt
ia

l
E

vo
lu

ti
on

Sw
ar

m
G

ra
m

m
at

ic
al

N
eu

ra
l

N
et

w
or

ks

E
vo

lu
ti

on

by

π

Fig. 1.1. A taxonomy of the biologically inspired algorithms that are discussed in
this book

4 1 Introduction

employ an evolutionary approach include genetic algorithms (GAs), genetic
programming (GP), evolutionary strategies (ES) and evolutionary program-
ming (EP).

A significant recent addition to BIA methodologies is grammatical evolu-
tion (GE), an evolutionary automatic programming methodology, which, for
example, can be used to evolve rule sets or financial trading systems. GE in-
corporates a grammar which governs the creation of these rule sets. The idea
of a grammar is inspired by the biological process of the mapping of genes to
proteins.

1.1.3 Social Systems

The social models considered in this book are drawn from a swarm metaphor.
Two popular variants of swarm models exist, those inspired by the flocking
behaviour of birds and fish, and those inspired by the behaviour of social
insects such as ants. The essence of these systems is that they exhibit flex-
ibility, robustness, self-organisation, and communication between individual
members of the population. The swarm metaphor has been used to design
algorithms which can solve difficult problems by creating a population of
problem-solvers, and allowing these to communicate their relative success in
solving the problem to each other. Higher-performing individuals attract the
attention of others, who test variants on their problem-solving strategy in an
attempt to improve it.

1.1.4 Artificial Immune Systems

The human immune system is a highly complex system, comprised of an intri-
cate network of specialised tissues, organs, cells and chemical molecules. The
capabilities of the natural immune system are to recognise, destroy and re-
member an almost unlimited number of foreign bodies, and also to protect the
organism from misbehaving cells in the body. To assist in protecting the or-
ganism, the immune system has the capability to distinguish between self, and
non-self. Artificial immune systems (AIS) draw inspiration from the workings
of the natural immune system to develop algorithms for optimisation and clas-
sification. Practical applications of AIS models to pattern-recognition tasks
include the identification of potentially fraudulent credit card transactions,
the identification of the ‘state’ of the stock market, and the identification of
financially at-risk companies.

1.2 Computer Trading on Financial Markets

Computerised or automated trading on financial markets is not a new phe-
nomenon. Computers have been used for program trading for many years. In

1.3 Challenges in the Modelling of Financial Markets 5

program trading, the object is usually to uncover and eliminate anomalies
between financial derivatives and the underlying financial assets which make
up those derivatives.1 A typical example of program trading is index arbi-
trage which involves the automated purchase or sale of a basket of stocks
which make up a market index, in conjunction with the simultaneous sale
or purchase of a derivative product such as stock index futures, in order to
profit from the price difference between the basket and the derivative prod-
uct. In theory the transaction generates risk-free returns, but in practice it
relies on estimates of dividend income from companies, an estimate of the rate
of return available on invested dividends, and the ability of the computer to
make the purchases/sales at the prices which produced the arbitrage opportu-
nity. Program trading accounts for a considerable portion of trading on major
stock exchanges. For example, it is estimated that program trading volume
accounted for approximately 50.6% of the total trading volume on the New
York Stock Exchange (NYSE) in 2004 [163].

A second, less publicised use of computers is to construct trading systems
which assume trading risk in the search for superior, risk-adjusted, returns.
These systems are the focus of interest of several of the case studies in this
book.

1.3 Challenges in the Modelling of Financial Markets

Modelling of financial markets is challenging for several reasons. Many factors
plausibly impact on financial markets including interest rates, exchange rates,
and the rate of economic growth. We have no hard theory as to how exactly
these factors effect prices of financial assets, partly because the effects are
complex, non-linear and time-lagged. For example, a change in interest rates
may impact on the foreign exchange rate for a currency, in turn effecting the
level of imports and exports into and from that country. Another difficulty that
arises in financial modelling is that unlike the modelling of physical systems we
cannot conduct controlled experiments. Only one sample path through time
is available for our examination, as we only have one history of market events.
Additionally, some factors which can effect financial markets are inherently
unpredictable such as earthquakes, the weather, or political events. Taken
together, these difficulties imply that our ability to predict market movements
will always be imperfect.

1A derivative is a financial instrument whose value is based on that of another
financial instrument such as a share. For example, investor A may sell an option on
a share to investor B. This option gives investor B the right to buy (or sell) that
share to investor A, at a specified price for a specified time. As the value of the
underlying share changes, the value of the financial derivative (the option) will also
change.

6 1 Introduction

1.3.1 Do Prices Follow a Random Walk?

The very attempt at modelling financial markets for profit meets with the
scorn of some financial economists. Two pillars of traditional financial eco-
nomics are that market prices of financial assets follow a random walk and
that markets are efficient. One of the earliest studies suggesting that prices
in markets might follow a random walk was undertaken by [123]. The tra-
ditional definition of a random walk is a process in which the changes from
one time period to the next are independent of each other, and are identically
distributed. If prices in financial markets did follow a random walk, this would
imply that the size and direction of a past change in price provides no insight
into the size and direction of the next change in price of that financial asset.
In other words, there would be no auto-correlation in the time-series of prices
from a financial market.

Market
Efficiency

Weak Form Semi-strong
Form

Strong Form

Fig. 1.2. Three forms of market efficiency

Closely related to the concept of a random walk (and often confused with
it) is the efficient market hypothesis (EMH). Although a random walk in
share prices could arise for a variety of reasons, it is consistent with a propo-
sition that current prices fully reflect the market’s aggregate assessment of
any existing information which could impact on the price of a financial asset.
If a market is informationally efficient, in that all information is impounded
accurately and instantly into prices once it becomes available, then there
is no scope to make excess returns from trading on such information. The
more information-efficient a market is, the more random the sequence of price
changes that it will produce, as prices will only alter when new information
emerges. As the nature of new information is by definition unpredictable, a
share’s price is equally likely to rise or fall in the future. Three versions of
market efficiency were posited [73] (Fig. 1.2).

1.3 Challenges in the Modelling of Financial Markets 7

Under weak form efficiency it is considered that the price of a share at any
point in time reflects all the information contained in its price history. This
would imply that excess risk-adjusted returns cannot be obtained by attempt-
ing to construct a model which uses information on past share prices, or past
transaction volumes, to predict future share prices. The semi-strong form of
efficiency suggests that a share price at any point in time reflects all publicly
available information which could impact on the share’s price. The strong
form of market efficiency implies that share prices include all information rel-
evant to the price of a share, including both public and private (non-public)
information.

1.3.2 Attack of the Anomalies

If the semi-strong form of the EMH was correct, there would be no scope
to construct a model of a financial market using publicly available informa-
tion, which would generate excess risk-adjusted returns. In spite of the initial
research which lent broad support to the EMH, there is a growing body of
research in more recent times which suggests that subtle patterns do exist
in time-series of financial asset prices, and that these prices do not follow a
random walk [143, 144]. Among the anomalies that have been noted are the ex-
istence of serial correlation in weekly and monthly stock returns, particularly
for small capitalisation (small company) stocks. Generally, three patterns of
serial correlation in stock returns are recognised: short-term reversals (looking
at returns over a few weeks), medium-term inertia, and longer-term reversals.

A considerable body of empirical evidence suggests that short-run volatil-
ity in share returns is clustered. A large change in price tends to be followed
by another large change in price, but the direction of this change is difficult
to predict. In other words, prices tend to be volatile when they have just been
volatile, leading to patterns of short-run price reversals. Under medium-term
inertia, good (or bad) performance of a stock over 3-12 months is typically in-
dicative of continued good (or bad) performance in the next few months. This
could provide scope for the implementation of momentum investment strate-
gies, where investors seek to buy (sell) shares which have recently trended
upwards (downwards). Over longer time periods (3-5 years), there is evidence
of negative serial correlation in share returns, suggesting that stocks that have
performed well over the last several years are more likely to under-perform
in the future. This lends support to the common idea of contrarian or value
investment strategies where investors buy out-of-favour stocks (those whose
share price has underperformed that of their peers in recent years). A posited
explanation for this negative serial correlation is the over-reaction hypothesis
that investors are subject to waves of optimism and pessimism which cause
prices to swing temporarily away from their underlying value for individual
firms or whole sectors [53, 63]. Other examples of asset-price anomalies are
reported in [37] and [54].

8 1 Introduction

Interpretation of the results of studies reporting anomalies has been contro-
versial [74, 75], but they are consistent with a hypothesis that market efficiency
is a relative term. Under this premise, as market participants uncover new
information processing mechanisms (such as BIAs), market efficiency is en-
hanced as market participants apply the new information processing method-
ology. It is plausible that novel, powerful computational techniques which can
uncover new price-relevant information could prove profitable. However mar-
kets represent a competitive, adaptive environment and are likely to rapidly
impound available information into asset prices. Just as $100 bills do not last
long on the sidewalk, traders who constitute markets have a vested interest
in searching for and exploiting any edge which could lead to profit. Financial
modelling in such an environment can be compared to an arms race whereby
each player rapidly cancels out any advance of another. The advantage offered
by a new modelling technique is therefore likely to be short-lived.

There are close parallels between the challenges of the environment of
financial markets, and those from which several of the biologically inspired
algorithms discussed in this book are drawn. Evolutionary algorithms, swarm
algorithms and immune algorithms are drawn from environments where, just
as in financial markets, there is continual adaptation and where there is com-
petition for resources between individuals.

1.4 Linear Models

The goal in modelling a system is typically to gain insight into its behaviour, to
determine which factors impact on the output of the system, and to determine
how influential each of these factors is. A second goal is to enable prediction
of the future output of the system under different conditions. A simple linear
model has the general form:

Y = α + β1X1 + . . . + βnXn (1.1)

where Y is the dependent variable, X1, . . . , Xn are independent (or explana-
tory) variables (in a simple model there may be only one independent variable,
in a multiple regression model there will be several), β1, . . . , βn are regression
coefficients, and α is a constant which allows the model to produce a value
for Y even if all the dependent variables have a zero value.

In constructing a linear model, the first step is typically to posit a cause-
and-effect relationship based on prior theory or intuition between the depen-
dent variable and one or more explanatory variables (or inputs). In other
words: ‘I think x and y impact on the value of z’. Two questions then spring
to mind:

i. Is the assumption that x and y effect z supported by empirical evidence?
ii. How great is the effect of x and y respectively on z?

1.4 Linear Models 9

To answer these questions, we can collect sample data, vectors of explanatory
variables and the associated value of the dependent variable, and then either
manually or using a computer package determine the values for the regression
coefficients which produce a model whose output closely agree with actual
known output for each vector of input data. If values can be found for the
regression coefficients such that the linear model is successful in explaining a
high portion of the variation in the dependent variable (z), where the signs (+
or −) of the regression coefficients concord with theory/intuition, we consider
that the model is good, and that our hypothesis that x and y impact on z is
plausibly supported by the collected data.

Error
y

x

Fig. 1.3. The least-squares regression line is constructed by minimising the sum
of the squared errors for each data-point. The error for each point is the difference
between its actual value of y, and the predicted value of y according to the regression
line

The Error Measure

To determine the values of the regression coefficients, the modeller must de-
fine an error measure so that the error between the model’s predicted output
and the actual output value can be calculated. This error is then used as feed-
back to alter the regression coefficients in order to reduce the error measure.
Typically in basic regression models the goodness-of-fit measure is the sum of
the squared errors between the predicted and the actual outputs (Fig. 1.3). If
we are willing to make assumptions concerning the distribution of the error
terms resulting from the model’s predictions, i.e. that the errors

10 1 Introduction

• have a mean of zero,
• are normally distributed,
• are independent, and
• have constant variance,

then a series of statistical statements can be made including the construction
of confidence intervals for the model’s predictions and for the values of the
regression coefficients. One issue of particular interest is whether the regression
coefficients are significantly different from zero.

Modelling with Biologically Inspired Algorithms

In applying the various forms of biologically inspired algorithms, we are un-
dertaking the same basic modelling process, although the actual mathematical
form of the resulting model may be considerably more complex than that of
the simple linear regression model. If we want to predict a future share price
or other financial variable, can we identify plausible sets of explanatory (in-
put) variables based on theory or intuition? If so, we can test our hypothesis
that there is a link between the explanatory and dependent variables by using
historical market data.

Although the choice and implementation of modelling methodology (lin-
ear regression, artificial neural networks, etc.) can play an important role in
determining the quality of the final model, it is only one component of the
modelling process. Other vital decisions faced by the modeller address ques-
tions such as:

• What data should be used to construct the model?
• Is the cause-and-effect relationship plausible?
• Does this data need to be preprocessed before it is included in the model?
• What error measure is appropriate?

No modelling methodology will compensate for poor decisions in these steps,
and each of these issues will be discussed in later chapters.

1.5 Structure of the Book

The remainder of this book is divided into three parts. In Part I a range of
biologically inspired algorithms are introduced and explained. These offer the
potential to develop useful financial models. However, despite the undoubted
power of these algorithms, their successful implementation requires the care-
ful selection of explanatory variables, and the careful validation of the results
arising from the developed models. Therefore the book contains a section on
model development (Part II), which covers a range of practical issues which
arise in the creation of financial models. Finally, in Part III, a series of case

1.5 Structure of the Book 11

studies are provided to illustrate several potential financial applications of bi-
ologically inspired methodologies. A number of these cases concentrate on the
construction of trading systems in equity and foreign exchange markets. The
utility of the methodologies is further demonstrated through their application
to a range of other tasks, including the prediction of corporate failure, and
the prediction of corporate bond ratings.

Part I

Methodologies

2

Neural Network Methodologies

The human brain consists of about 100 billion nerve cells or neurons . Each
of these is interconnected to a few thousand other neurons, and is constantly
receiving electrical signals from them along fibres, called dendrites, that em-
anate from the cell body. If the total signal coming into an individual neuron
at a point in time exceeds a threshold value, the neuron fires and produces
an outgoing signal along its axon, which in turn is transmitted to other neu-
rons. Connections between neurons occur at synapses, and signals cross the
synaptic gap by means of a complex electro-chemical process. The brain can
therefore be stylised as a vast interconnected, parallel-processing unit. This
unit receives inputs from its environment, it can encode and recall memories,
and it can integrate inputs to produce a thought or an action (an output).
The brain has the capability to recognise patterns, and to predict the likely
outcome of an event based on past learning.

Artificial neural networks (NNs) comprise a family of mathematical mod-
elling methodologies whose metaphorical inspiration is loosely drawn from the
workings of the human brain and central nervous system. NNs can be used for
a wide variety of tasks including the construction of models for the purposes
of prediction, classification and clustering.

With the wide availability of both historical financial data and commercial
NN software, there has been an increasing volume of literature applying NNs
to prediction, of both equity markets [13, 76, 86, 186, 226] and foreign ex-
change markets [82, 112, 115, 223]. NNs have also been extensively applied in
other financial applications, notably credit rating, prediction of financial dis-
tress, and fraud detection. Wong, Lai and Lam [221] provide a comprehensive
bibliography of the literature on business applications of NNs.

2.1 A Taxonomy of NNs

A wide variety of NN architectures and training algorithms exist. These can
be differentiated from each other along three main axes:

16 2 Neural Network Methodologies

Axon
Cell body

Dendrites

OutputInput

Synapse

Fig. 2.1. A simplified diagram of a nerve cell

i. connection topology,
ii. training method, and
iii. learning algorithm.

The connection topology defines how the processing units or nodes are
connected to each other. The training method is concerned with how the NN
learns. In supervised learning, the NN is provided with training data (input
data for which the output is already known), and over multiple iterations
of the learning algorithm discovers how to link the inputs to the associated
known outputs. Unsupervised learning occurs when the NN is not provided
with outputs, but rather is left to uncover patterns in the input data. An
example of an unsupervised learning scenario would be the uncovering of pre-
viously unknown patterns in databases of customer information. The learning
algorithm defines how error is measured during the training process, and how
the NN model is updated during training in order to reduce this error.

Many forms of NNs can be developed by making different choices for the
above three items. Three common NN structures (Fig. 2.2) are described in the
following sections: the multi-layer perceptron, radial basis function networks,
and self-organising maps.

2.2 The Multi Layer Perceptron

The canonical NN model, the multi-layer perceptron (MLP), consists of a
multi-layer, feedforward architecture, and is trained using the backpropaga-
tion training algorithm. The architecture is described as feedforward as the
pattern of activation of the network flows in one direction only, from the in-

2.2 The Multi Layer Perceptron 17

Neural Network
Structures

Multi-layer
Perceptron

Radial-Basis
Function
Networks

Self-organising
Maps

Fig. 2.2. Common neural network structures

put to the output layer. MLPs usually consist of three layers of interconnected
computing units called nodes (Fig. 2.3).

��
��
��

��
��
��

���
���
���

���
���
���

a0 to ai

b0 to bi

Fig. 2.3. An example of a three-layer feedforward MLP. The left-most layer of
nodes is the input layer, the rightmost node is the output node, and the middle
layer of nodes is the hidden layer

The first layer, the input layer, serves as a holding layer for the data being
input to the MLP. A vector of input data is presented to the input layer
(nodei in the input layer receives elementi in the data vector). This layer is

18 2 Neural Network Methodologies

connected to one or more hidden layers (so called as they are not directly
connected to the outside world), and nodes in this layer are connected in turn
to an output layer which represents the processed output from the model.
Each of the connections (arcs) between the nodes has an associated real-
valued weight, and this weight is similar in concept to a regression coefficient.
The signal or value passing along a connection is modified by multiplying it
by this weight before it reaches the next node. The weight therefore serves
to amplify or dampen the strength of a signal (value) passing along an arc.
Generally, the processing carried out at each node in the hidden and output
layers consists of passing the sum of the weighted inputs to that node through
a non-linear function, known as a transfer function (Fig. 2.4). Typical choices
for the transfer function are logistic or hyperbolic tan (tanh) functions, which
transform an input in the range −∞ to +∞ to the range (0,1) and (-1,1)
respectively (Fig. 2.5). The logistic function has the form

yj =
1

1 + exp−

P (2.1)

where
∑

is the weighted sum of the inputs into nodej , and yj is the output
from nodej .

It is easily demonstrated that a simple 2-layer MLP with a single output
node, no hidden layer and a linear transfer function is equivalent to a linear
regression model, where the arc weights correspond to regression coefficients.
For example, the regression equation Y = a + bx1 + cx2 can be represented
as in Fig. 2.6. Similarly, a logistic regression model can be recast as a 2-layer
MLP with a sigmoid transfer function. A multi-layer MLP can therefore be
described as a non-parametric, non-linear regression model [98].

w1

w2

w3

∑

Input 1

Input 2

Input 3

Output
Transfer
function

Fig. 2.4. A single processing node in an MLP. The arc weights are denoted w1, w2
and w3. The weighted sum of the inputs to the node is passed through a transfer
function, to produce the node’s output

2.2 The Multi Layer Perceptron 19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-6 -4 -2 0 2 4 6

f(x
)

x

Logistic Function

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2 0 2 4 6

f(x
)

x

tanh Function

Fig. 2.5. Logistic and tanh functions

a

b

c

∑ y

1

X1

X2

Fig. 2.6. Linear equation as a node-arc structure (y = a + bx1 + cx2)

20 2 Neural Network Methodologies

Characterising a MLP

MLPs provide an example of parallel distributed computing, as each hidden
layer node acts as a local processor of information, yet also acts concurrently
and in parallel with the other nodes in its layer. Although the processing
which takes place at individual nodes is relatively simple, the linkage of in-
dividual nodes gives rise to emergent capabilities for the network, permitting
complex non-linear, input-output mappings. In essence, a MLP implements a
function f that maps a vector of input values x to one or more output values y:
y = f(x). In constructing a MLP the object is to approximate the underlying
(but initially unknown) function f as well as possible. MLPs have universal
approximator capabilities [46] in that under general conditions they are ca-
pable of mapping any continuous function [110, 191]. In contrast to ordinary
least-squares regression models which produce a line, plane or hyperplane de-
pending on the number of independent variables, MLPs which use non-linear
transfer functions can produce complex (but smooth) response surfaces with
peaks and troughs in n dimensions. Changing the weights during the learning
process tunes this response surface to more closely fit the training data.

NNs are inductive, data-driven modelling tools, which can map non-linear
data structures without requiring an explicit a priori specification of the re-
lationship between model inputs and outputs. This is a particular advantage
when applied to financial data, as in many cases we have a weak understanding
of the causal relationships between variables.

The behaviour of MLPs, how they map inputs to output(s), is influenced
primarily by the form of processing that takes place at hidden and output layer
nodes, how the nodes are interconnected and how the weights are associated
with these interconnections. The general form of the three-layer MLP is:

zt = L

⎛
⎝a0 +

x∑
j=1

wjL

(
y∑

i=0

biwij

)⎞
⎠ (2.2)

where bi represents inputi (b0 is a bias node), wij represents the weight be-
tween input nodei and hidden nodej , a0 is a bias node attached to the output
layer, wj represents the weight between hidden nodej and the output node,
zt represents the output produced by the network for input data vector (t),
and L represents a non-linear transfer function. The inclusion of a bias node
serves a similar purpose to the inclusion of a constant term in a regression
equation. The input value of the bias node is usually held constant at one,
and is automatically rescaled as necessary as the weights on its outgoing con-
nections change. The optimal size of the hidden layer is not known a priori
and is determined heuristically by the modeller.

2.2.1 Training an MLP

MLPs are trained using a supervised learning paradigm. In supervised learning
a set of input data vectors for which the output is already known are presented

2.2 The Multi Layer Perceptron 21

to the MLP. The MLP predicts an output for each input vector, and an error
between the predicted and the actual value of the output is calculated. The
weights on each connection in the network are then adjusted in order to reduce
the error. By altering the weights, the network can place different emphasis
on each input, and differing emphasis on the output of each hidden layer node
in determining the final output of the network. The knowledge of the network
is therefore embedded in its connection weights.

The Backpropagation Algorithm

The most common way of altering the weights in response to an error in the
network’s prediction is through use of the backpropagation algorithm. At the
start of the learning process the weights on all arcs are initialised to small
random values. The network is presented with an input data vector and then
proceeds to predict a value for the output. Total squared error is defined as:

E =

P∑
p=1

S∑
i=1

(tpi − op
i)

2 (2.3)

where P is the number of input-output vectors, S is the number of output
neurons, and tpi and op

i are the actual and the predicted values of the output.

Fig. 2.7. An error surface. As the values of the two weights changes, the resulting
network error also changes

22 2 Neural Network Methodologies

The backpropagation algorithm seeks to reduce the total error by calcu-
lating the gradient of the error surface at its current point (corresponding to
the current weight vector for the network), and adjusting the weights in the
network in order to descend the error surface (Fig. 2.7). This is achieved by
making a backward pass through the network, from the output to the input
layers, in which weight changes are propagated back through the arcs of the
network, so as to make the prediction of the network better agree with the
actual output value(s). The bigger the error, the more the arc weights are
adjusted. This step is performed repetitively over the entire training dataset,
until learning stops and the network reaches a stable minimum error. Once
the network has been trained, it can be used to predict an output for an input
data vector which it has not previously seen. A simple algorithm for training
a MLP is:

i. Initialise the values of the weights on each connection to small random
values in the range 0-1.

ii. Present an input vector x: x0, x1, ..., xn−1 and the associated target output
O. Assume the network has n input nodes, and that the weights between
nodes i and j are given by wij .

iii. Calculate the output from each node in the hidden layer, and then in the
output layer. The output from a node j in the hidden or output layer is
given by

zj = Ø

n−1∑
i=0

wijxi (2.4)

where Ø is the transfer function for that node.
iv. Adjust the weights on the connections between the nodes, commencing

with the output layer and working back to the input layer as follows:

wij(t + 1) = wij(t) − α

(
∂E

∂wij(t)

)
(2.5)

where wij(t) is the weight between nodes i and j at iteration t, α(> 0)
is the learning rate, and ∂E

∂wij(t)
is the contribution of that weight to the

total network error.1 Weights may be updated in batch mode based on
the total error when all the input-output training data is passed through
the model, or may be updated after each individual training vector is
presented to the network.

v. Repeat steps (ii) - (iv) until the error between the predicted value and the
actual value reaches a steady state or an acceptable minimum.

1The total error of the network is a function of the values of all of its weights. In
altering the individual weights during the backpropagation step, in order to minimise
this error, we consider the partial derivative of the total error with respect to each
individual weight wij(t).

2.2 The Multi Layer Perceptron 23

If the above algorithm is applied, there is a good chance that overtraining
will occur, and that the MLP will start to model noise in the training dataset
giving rise to poor performance when applied to new data. The network will
not generalise well. One way of reducing this problem is to use the method of
early-stopping. In this method, the dataset is divided into three components:
training data, validation data, and out-of-sample (test) data. The MLP is
constructed using the training dataset, but periodically during this process,
the performance of the network is tested against the validation dataset. The
network’s performance on the validation dataset is used to determine when
the learning process is stopped, and the best network is defined as that which
produces the minimum error on the validation dataset. Once the best network
is found the weights are fixed and the network is ready for application to out-
of-sample data.

2.2.2 Practical Issues in Training MLPs

A number of practical problems arise in using MLPs for modelling.

• What measure of error should be used?
• What parameters should be chosen for the backpropagation algorithm?
• How many hidden layers (or nodes in each hidden layer) should there be?
• Is the data of sufficient quality to build a good model?

Measure of Error

Many different error criteria can be applied in determining the quality of fit of
a NN model. Most applications use traditional criteria drawn from statistics
such as the sum of the squared errors, or mean squared error (MSE):

MSE =

∑n
i=1 ||Ypredict,i − Yactual,i||2

n
(2.6)

where Ypredict,i is the output value predicted by the NN model for input vector
i, Yactual,i is the actual output value for the input vector, and there are n input-
output data vectors. Although this is a common error metric it can lead to
poor generalisation, as one way of reducing MSE is to build a large NN which
learns the noise in the training dataset. This can be discouraged by using
a regularised performance function (error measure), where the performance
function is extended to include a penalty term which gets larger as network
size grows. As an example, the MSE error term could be adjusted to give:

error measure = α MSE + (1 − α) MSW (2.7)

where MSW is a penalty term, calculated as the mean sum of the squared
weights in the network. The values of α and (1-α) represent the relative im-
portance that is placed on the MSE and the penalty term respectively. The

24 2 Neural Network Methodologies

penalty term will tend to discourage the use of large weights in the network,
and will tend to smooth the response of the network.

Although statistical measures of error are commonly used when developing
NNs, it should be remembered that they are not an ideal error measure if the
aim is to develop a market-trading system. The objective of a trading system
is not to minimise a statistical measure of error, but to maximise risk-adjusted
profit.

Parameters for the Backpropagation Algorithm

The essence of training a MLP is the determination of good values for the
individual weights in the network. If there are n weights in the network, the
task of uncovering good weights amounts to a non-linear optimisation problem
where an error surface exists in (n + 1)-dimensional space. Unfortunately, no
general techniques exist to optimally solve this problem. The backpropagation
training algorithm is a gradient-descent, local search algorithm, which is prone
to becoming trapped in local optima on the error surface.2 A number of steps
can be taken to lessen the chance of this happening.

Typically, during the training process, the network weights are altered,
based on the current model error and a modeller-tunable parameter (the learn-
ing rate) which governs the size of weight change in response to a given size
of error. Usually the value of the learning rate will decay, from a higher to
a lower value over the training run, with fairly rapid learning in the initial
training stages, and smaller weight adjustments later in the training run. The
object in varying the learning rate during the training process is to enable the
NN to quickly identify a promising region on the error surface, and later to
allow the backpropagation algorithm to approach the minimum error point in
that region of the error surface.

However, there is no easy way to determine a priori what learning rates
will produce best results. The learning process will typically have an element
of momentum built in, whereby the direction and size of weight change at each
step is influenced by the weight changes in previous iterations of the training
algorithm. Therefore the weight change on iteration t + 1 is given by:

∆wij(t + 1) = λ∆wij(t) − (1 − λ)α

(
∂E

∂wij(t)

)
(2.8)

where λ∆wij is the momentum term, and α is the learning rate. By varying
the value of the momentum coefficient, λ in the range 0 to 1, the importance
of the momentum coefficient is altered. Under the concept of momentum, if

2Many gradient-descent-based alternatives to the backpropagation algorithm can
be used to train MLPs. A common alternative is the Levenberg-Marquardt (LM)
algorithm [102], which approximates the error of the network with a second-order
expression, in contrast to the first-order approximation used by the backpropagation
algorithm.

2.2 The Multi Layer Perceptron 25

the MLP comes across several weight updates of the same sign, indicating
a uniform slope on the error surface, the weight update process will gather
momentum in that direction. If later weight updates are of different signs, the
effect of the momentum term will be to reduce the size of the weight updates
below those which would occur in the absence of the momentum component of
the weight update formula. The practical affect of momentum is to implement
adaptive learning, by speeding up the learning process over uniform regions
of the error surface.

The backpropagation learning algorithm can be compared to jumping
around an error surface on a pogo stick. If the jumps are too small (cor-
responding to a low learning rate) the pogo stick jumper could easily get
stuck in a local minimum, if the jumps are too large, the pogo stick jumper
could overshoot the global minimum error. This analogy also underlines the
importance of the initial weight vector. The initial weight vector determines
the starting point on the weight-error surface for the backpropagation algo-
rithm. If a poor starting point is chosen, particularly if the learning rate is low,
the algorithm could quickly descend into an inescapable local minimum (Fig.
2.8). To reduce the chance that a bad initialisation of the weight vectors will
lead to poor performance of a MLP, performance should be assessed across
several training runs using different initialisations of the connection weights
(Fig. 2.9).

Data Quality

The quality of the dataset also plays a key role in determining the quality of
the MLP. Obviously if important data is not included, perhaps because it is
not available, the results from the MLP are likely to be poor. Another data-
related issue is how representative the training data is of the whole dataset.
If the training data is not fully representative of the behaviour of the system
being modelled, out-of-sample results are again likely to be poor (Figs. 2.10
and 2.11). The dataset should be recut several times to produce different
training and out-of-sample datasets, and the stability of the results of the
developed MLPs across all of the recuts should be considered.

Selecting Network Structure

Although a three-layer MLP is theoretically capable of approximating any
continuous function to any desired degree of accuracy, there is no theory to
decide how large the hidden layer needs to be to achieve this [46]. Typically
the size of this layer is determined heuristically by the modeller. However as
the hidden layer gets larger, the number of degrees of freedom consumed by
the model rises, and the amount of data needed to train the MLP increases.
Broadly speaking, a degree of freedom is consumed by each weight in the MLP,
hence a fully connected 20-10-1 MLP (input layer nodes-hidden layer nodes-
output node) contains (20*10) + (10*1) = 210 weights. As a rule of thumb,

26 2 Neural Network Methodologies

Error

Weight value

Starting point

Local error
minimum

Global error minimum

Fig. 2.8. Given this starting point on the weight surface, a gradient-descent algo-
rithm will only find a local error minimum

Error

Weight value

Starting point

Local error
minimum

Global error minimum

Fig. 2.9. Altering the initial weights moves the starting point on the weight surface,
making the global error minimum point accessible

there should be at least 5-10 data vectors for each weight estimated to reduce
the chance of overfitting the training data with consequent poor generalisation
out-of-sample. Therefore the above network will require a fairly large dataset
for training purposes. The selection of the size of the hidden layer entails a
trade-off between increasing the power of the MLP (more nodes) and avoiding
overfit (fewer nodes).

Sometimes in an attempt to resolve this dilemma, a second hidden layer
is added to the basic three-layer MLP, with the size of the original hidden
layer being reduced. If the quantity of data for training is constrained, the
modeller may try two hidden layers of moderate size, in an attempt to reduce
the quantity of training data required while still providing the MLP with
reasonable mapping power. For example, if an alternative four-layer MLP was

2.2 The Multi Layer Perceptron 27

Feature 1

Feature 2

Fig. 2.10. The clear points are training data, and the shaded points are test data.
In this cut of the dataset between training and test data, the training data is not
representative of the whole dataset

Feature 1

Feature 2

Fig. 2.11. The clear points are training data, and the shaded points are test data.
In this recut, the training data is more representative of the whole dataset

proposed for the above dataset with a 20-5-5-1 structure, the total number of
weights would drop to (20*5) + (5*5) + (5*1) = 130.

In designing MLPs, there is no restriction that they must have a fully con-
nected feedforward connection structure. Each input need not be connected to
each hidden layer node, and nodes can be connected to nodes which are more
than one layer ahead in the network (a jump connection network) (Fig. 2.12).
These networks can be trained using the usual backpropagation method.

28 2 Neural Network Methodologies

1

4

3

2

5

Fig. 2.12. Input 2 is connected to only one hidden layer node, and also has a jump
connection directly to the output node

2.2.3 Recurrent Networks

The inspiration for recurrent networks (networks that allow feedback connec-
tions between the nodes) is the observation that the human brain is a recurrent
network. The activation of a particular neuron can initiate a flow of activa-
tions in other neurons which in turn feed back into the neuron which initially
fired. The feedback connections in a recurrent network imply that the output
from node b at time t can act as as an input into node a at time t+x. Nodes b
and a may be in the same layer, or node a may be in an earlier layer of the net-
work, and a node may feed back into itself (a = b). Recurrent networks can be
useful when modelling time-series data, as the recurrent connections allow the
network to store information received in previous time steps, and then feed it
back into an earlier layer of the network. In contrast, a standard feedforward
network has a data window of a fixed size, and associations in the data that
extend beyond this window cannot be found by the network. The practical
benefit of this is that recurrent network designs can be compact. Consider the
case where a modeller wishes to provide a neural network with information on
the past N values of M input variables. If a canonical feedforward MLP was
used, this would require M ∗ N inputs, possibly a large number, leading to
a large number of weights which require training. As recurrent networks can
embed a memory, their use can reduce the number of input nodes required.

An example of a simple recurrent network is an Elman network. This in-
cludes three layers, with the addition of a set of context nodes which represent
feedback connections from hidden layer nodes to themselves (Fig. 2.13). The
connections to the hidden layer from these context nodes have a trainable
weight. The context nodes act to maintain a memory of the previous period’s
activation values of the hidden nodes. The output from the network depends
therefore on both current and previous inputs. An implication of this is that
recurrent networks operate on both an input space and an internal state space.
Generalising the context layer concept, it is possible to implement more than

2.3 Radial Basis Function Networks 29

one context layer, each with a different lag period. Time is represented im-
plicitly as a result of the design of the network, rather than explicitly through
the use of a large number of time-lagged inputs.

Several methods exist to train Elman networks. The original method pro-
posed [71] was to treat each of the feedback inputs from the context layer
as an additional input to the network at the next time step, and a standard
backpropagation algorithm was used to train all the weights in the network.
Other methods of training these networks include the use of backpropaga-
tion through time [187]. Training of recurrent networks using gradient-based
methods can be time-consuming, and alternative methods using evolutionary,
particle swarm or hybrid approaches exist [194].

Input nodes x(t)

Hidden nodes y(t)

Output nodes z(t)

Context nodes y(t-1)

Copy of y(t-1)

Fig. 2.13. An Elman network. The output of each of the hidden layer nodes at
time t − 1 is stored in individual context nodes, and each of these are fed back into
all the hidden layer nodes as an input, at time t. The context layer nodes are empty
during the first training iteration

2.3 Radial Basis Function Networks

A radial basis function network (RBFN) generally consists of a three-layer
feedforward network, and is constructed using a supervised training process.
Just as for the MLP, the RBFN can be used for prediction and classifica-
tion purposes, but RBFNs differ from MLPs in that the activation functions
of the hidden layer nodes are radial basis functions. The use of RBFNs for
classification purposes is based on Cover’s theorem on the separability of pat-
terns [44]. This theorem states that complex pattern classification problems

30 2 Neural Network Methodologies

are more likely to be linearly separable if the patterns are initially projected
nonlinearly into a higher dimensional space. Therefore when using a RBFN
for classification purposes, the hidden layer nodes act to project the input
vector into a higher dimension (so there should be more hidden layer nodes
than inputs) after which it can be classified using a linear transfer function
at the output layer.

w1

Output

 H1

 H5

w5

 I1

 I2

 I3

 H0

w0

.

.

.

Fig. 2.14. A radial basis function network. The output from each hidden node (H0
is a bias node, with a fixed input value of 1) is obtained by measuring the distance
between each input pattern and the location of the hidden node, and applying the
radial basis function to that distance. The final output from the network is obtained
by taking the weighted sum (using w0, w1 and w5) of the outputs from the hidden
layer and from H0

The training of RBFNs typically consists of a combination of unsupervised
and supervised learning. Initially, a number hidden layer nodes (or centres)
must be positioned in the input data space. This can be performed by following
a simple rule, or in a more sophisticated application by using unsupervised
learning. Methods for choosing the locations of centers include distributing the
centres in a regular grid over the input space, selection of a random subset of
the training data vectors to serve as centres, or using an algorithm to cluster
the input data (SOMs, which are described in the Sect. 2.4 can be used for

2.3 Radial Basis Function Networks 31

this) and then selecting a centre location to represent this cluster. Each of
these centres forms a hidden node in the RBFN’s structure.

Input data vectors are typically standardised before training. When each
input vector is presented to the network a value is calculated at each centre
using a radial basis function. This value represents the quality of the match
between the input vector and the location of that centre in the input space.
The greater the distance between an input vector and a particular hidden
node, the lower the activation value of the node. Each hidden node, there-
fore, can be considered as a local detector in the input data space. The most
commonly used radial basis function is a Gaussian function. This produces
an output value of one if the input and weight vectors are identical, falling
towards zero as the distance between the two vectors gets large. A range of
alternative radial basis functions exists including the inverse multi-quadratic
function and the spline function.

The second phase of the model construction process is the determination
of the value of the weights on the connections between the hidden layer and
the output layer. In training these weights, the output value for each input
vector will be known, as will the activation values for that input vector at each
hidden layer node, so a supervised learning method can be used. The simplest
transfer function for the node(s) in the output layer is a linear function where
the network’s output is a linearly weighted sum of the outputs from the hidden
nodes. In this case, the weights on the arcs to the output node(s) can be found
using linear regression, with the weight values being the regression coefficients.
Sometimes it may be preferred to implement a non-linear transfer function
at the output node(s). For example, when the RBFN is acting as a binary
classifier it would be useful to use a sigmoid transfer function to limit outputs
to the range 0 → 1. In this case, the weights between the hidden and output
layer could be determined using the backpropagation algorithm.

Once the RBFN has been constructed using a training set of input-output
data vectors it can then be used to classify or to predict outputs for new
input data vectors, for which an output value is not known. The new input
data vector is presented to the network, and an activation value is calculated
for each hidden node. Assuming that a linear transfer function is used in the
output node(s), the final output produced by the network is the weighted sum
of the activation values from the hidden layer, where these weights are the
coefficient values obtained in the linear regression step during training. The
basic algorithm for the canonical RBFN is as follows:

i. Select the initial number of centres (m).
ii. Select the initial location of each of the centres in the data space.
iii. For each input data vector/centre pairing calculate the activation value

φ(||x − y||), where φ is a radial basis function and ||...|| is a distance
measure between input vector x and a centre y in the data space. As an
example, let d = ||x − y||. The value of a Gaussian RBF is then given by

32 2 Neural Network Methodologies

y = exp(
−d2

2σ2), where σ is a modeller selected parameter which determines
the size of the region of input space a given centre will respond to.

iv. Once all the activation values for each input vector have been obtained,
calculate the weights for the connections between the hidden and output
layers using linear regression.

v. Go to step (iii) and repeat until a stopping condition is reached.
vi. Improve the fit of the RBFN to the training data by adjusting some or

all of the following: the number of centres, their location, or the width of
the radial basis functions.

As the number of centres increases, the predictive ability of the RBFN on the
training data will increase, possibly leading to overfit and poor out-of-sample
generalisation. Hence, the object is to choose a sufficient number of hidden
layer nodes to capture the essential features in the training data, without
overfitting the training data. The selection of centre locations and the training
of the RBFN can be automated by using an evolutionary algorithm (Chap.
3).

2.4 Self-organising Maps

Self-organising maps [128, 129, 130] are a form of NN which can cluster data
using unsupervised learning. Unsupervised learning is used when the outputs
(clusters) are not known a priori. This may occur for example, when trying
to segment a customer base.

The SOM projects (compresses) input data vectors onto a low-dimensional
space, typically a two-dimensional grid structure, thereby producing a vi-
sual representation of the input data. The unsupervised learning process is
based solely on measures of similarity amongst the input data vectors. Dur-
ing the training process, the network undergoes self-organisation as ‘like’ in-
put data patterns are grouped or clustered together on the grid. SOMs have
been utilised for a variety of clustering and classification problems including
speech recognition and medical diagnosis [101]. The SOM bears similarities
with the traditional statistical technique of Principal Component Analysis
(PCA). However, unlike PCA the projection of the input data is not restricted
to being linear.

The SOM consists of two layers, the input layer (a holding point for the
input data), and the mapping layer (Fig. 2.15). The input layer has as many
nodes as there are input variables. The two layers are fully connected to each
other and each of the nodes in the hidden layer has an associated weight
vector, with one weight for each connection with the input layer.

The aim of the SOM is to group like input data vectors together on the
mapping layer, therefore the method is topology preserving as items which are
close in the input space are also close in the mapping space. During training
the data vectors are presented to the SOM through the input layer one at a

2.4 Self-organising Maps 33

Input Layer Mapping Layer
weights
on all
arcs

Fig. 2.15. A SOM with a 2-d mapping layer. On grounds of visual clarity, only the
connections between the input layer and two of the mapping layer nodes are shown

time. The nodes in the mapping layer compete for the input data vector. The
winner is the mapping node whose vector of incoming connection weights most
closely resembles the components of the input data vector. The winner has the
values of its weight vector adjusted to move them towards the values of the
input data vector, and the mapping layer nodes in the neighbourhood of the
winning node also have their weight vectors altered to become more like the
input data vector (a form of co-operation between the neighbouring nodes). As
more input data vectors are passed through the network, the weight vectors of
the mapping layer nodes will self-organise. By the end of the training process,
different parts of the mapping layer will respond strongly to specific regions of
input space. Once training of the network is complete, the clusters obtained
can be examined in order to gain better insight into the underlying dataset
(for example, what input items have been grouped together, what are the
typical values for each input in a specific cluster).

2.4.1 Implementing a SOM

A SOM can be implemented in a variety of ways. Specific choices faced by the
modeller include the method of weight initialisation between the input and
mapping layer nodes, the choice of topology of the mapping layer, the neigh-
bourhood size, the distance measure employed in determining which mapping

34 2 Neural Network Methodologies

node is closest to a given input data vector, and the learning method used to
update the weight vectors of the mapping layer once a winning node is deter-
mined. Input data vectors are typically standardised before training. Methods
of standardisation include dividing each column of input variables by its stan-
dard deviation, or the standardisation of each column of inputs based on their

range (e.g., x∗ = x−min(x)
max(x)−min(x)). The general training algorithm for the SOM

is as follows:

i. Initialise the weights between the input nodes and the mapping nodes.
ii. Present an input vector x: x0, x1, ..., xn−1.
iii. Calculate the distance between the input vector and the weight vector for

each mapping layer node j

dj =

n−1∑
i=0

(xi − wij)
2 (2.9)

iv. Select the mapping node j∗ that has the minimum value of dj .
v. Update the weight vector for mapping node j∗ and its neighbouring map-

ping nodes as follows

w(t + 1)ij = w(t)ij + η(t)h(t)(xi − wij) (2.10)

where η is the learning rate of the map, and h defines a neighbourhood
function. Both the neighbourhood size and the learning rate decay during
the training run, in order to fine-tune the developing SOM.

vi. Repeat steps (ii)-(v) until the weights have stabilised.

Classification with SOMs

Although technically SOMs are clustering algorithms, they can be used for
classification purposes. For example, if the classification problem is binary
and class membership is denoted by a 0 (class 1) or a 1 (class 2), and each
class is considered equally likely to occur a priori, a ratio value approach can
be applied. Under this approach, each node on the mapping layer outputs a
value (0 ≤ r ≤ 1), where r is calculated using:

r =

{
0.5 if n1 + n2 = 0,

n1

n1+n2
otherwise

(2.11)

where n1 and n2 are the number of class 1 and class 2 cases in the training
set which have been mapped to that node. Values close to 0 indicate a node
which classifies class 2 items, and values close to 1 indicate a node classifying
class 1 items. Out-of-sample data vectors for which the classification is not
known can be classified by presenting them to the network and determining
the class label of the mapping node to which the input vector is closest.

2.5 Summary 35

If there is a known difference in the rate of occurrence of each class, a
simple voting scheme can be used to assign class labels to each mapping
node after training. Suppose for example that class 2 is known to occur more
frequently than class 1. The default label for all mapping nodes is set as class 2.
During the training process, mapping nodes which are found to respond more
strongly to class 1 data vectors than to class 2 data vectors are relabelled as
class 1. After training is completed, out-of-sample data vectors are classified
by presenting them to the relabelled map, and assigning them the label of the
mapping node they are closest to.

Once the initial assignment of class labels has been made, it is possible to
fine-tune the mapping using learning vector quantisation (LVQ), a supervised
learning methodology [129]. Under LVQ, the weight vectors for all mapping
nodes are iteratively updated using

∆wi =

{
η(x − wi) if x is classified correctly,

−η(x − wi) if x is classified incorrectly
(2.12)

where wi is the weight vector for mapping node i. Typically a small value is
set for η (0.01 → 0.02), and it decrements to zero as the algorithm runs. The
object of the fine-tuning step is to pull weight vectors of nodes in separate
classes away from each other, in order to improve the delineation of the class
boundaries on the map.

Financial Application of a Clustering Algorithm

Apart from their use in data-mining large databases for previously unknown
patterns, clustering algorithms can be applied in the construction of a multi-
stage trading system. One problem when developing trading systems is that
the market is non-stationary, and different market conditions or regimes pre-
vail from time to time. Therefore, a trading system which works well in one
market environment may not perform well in another, and a practical dif-
ficulty emerges in deciding when to turn off or retrain an existing trading
system. Unsupervised learning methodologies such as SOMs can be applied
as a detector of a changing market environment. A SOM can be trained using
historic market data, and thereafter used to assess whether current market
data suggests that the market is moving from its current cluster or attractor
to another. Detecting the beginning of such a movement may provide time to
unwind trading positions and to exit from the current trading system before
losses emerge.

2.5 Summary

NNs consist of a family of robust, data-driven modelling methodologies which
generally outperform traditional linear modelling techniques when applied to

36 2 Neural Network Methodologies

financial data. However, the earlier comments regarding the clarity of NN
models should be borne in mind. Traditional approaches have the virtue of
apparent, if perhaps unwarranted, simplicity in terms of their model specifi-
cation. A charge which is sometimes levelled against NN techniques is that
they result in a black box model as it can be difficult to interpret their internal
workings and understand why the model is producing its output. However,
this criticism generally fails to consider that any truly complex, non-linear
system is unlikely to be amenable to simple explanation. Despite the power-
ful modelling capabilities of NNs, they do suffer from a number of practical
drawbacks:

i. It is difficult to embed existing knowledge in the model, particularly non-
quantitative knowledge.

ii. Care must be taken to ensure that the developed models generalise beyond
their training data.

iii. Results from the commonly used MLP methodology are sensitive to the
choice of initial connection weights.

iv. The NN model-development process entails substantial modeller interven-
tion, and can be time-consuming.

The last two of these concerns can be mitigated by melding the methodology
with an evolutionary algorithm. The resulting hybrid models are discussed in
the next chapter which introduces evolutionary algorithms.

3

Evolutionary Methodologies

This chapter provides an overview of a series of biologically inspired algorithms
drawn from an evolutionary metaphor. A substantial literature exists which
applies evolutionary methodologies to modelling of financial markets [2, 16,
51, 161].

In biological evolution, species are positively or negatively selected de-
pending on their relative success in surviving and reproducing in their current
environment. Differential survival and variety generation during reproduction
provide the engine for evolution [49, 201]. These concepts have metaphorically
inspired a family of algorithms known as evolutionary computation (EC). The
chapter focusses on three evolutionary algorithms (EAs) that fall under the
umbrella of EC: the genetic algorithm (GA), differential evolution (DE), and
genetic programming (GP).

Members of the family of EAs share a great deal in common with each
other and as such we shall treat the following overview of the concepts that
underpin a specific EA instance, the GA, in the broader context of providing
an introduction to some of their common principles.

3.1 Genetic Algorithm

Although the development of the GA dates from the 1960s, they were first
brought to the attention of a wide audience by Holland [108]. To date their
main application in a business setting has been in the domain of finance
[16, 43, 51, 52, 217].

The GA is a mathematical optimisation algorithm with global search po-
tential. The methodology is inspired by a biological metaphor and applies a
pseudo-Darwinian process to evolve good solutions to real-world problems.
The GA adopts a populational unit of analysis, wherein each member of the
population encodes a potential solution to the problem of interest. These so-
lutions may be as diverse as a set of rules, a series of coefficient values, or a
representation of a NN. Evolution in the population of encodings is simulated

38 3 Evolutionary Methodologies

by means of a pseudo-natural selection process using differential-fitness selec-
tion and pseudo-genetic operators which induce variation in the population
between successive generations.

Although many variants of GAs exist [91, 153] each potential solution is
traditionally encoded as a binary string (0101 . . . 1). The quality of each binary
string is determined by reference to a problem-specific fitness function, which
maps each string to a number representing its quality or fitness. The fitness
of a string is typically, but not necessarily, normalised to the range 0 to 1 and
standardised such that if 0 represents the worst possible fitness value then
1 corresponds to the best possible fitness, or vice versa. The fitness function
represents an analogue of the environment in the real world. In addition to
absolute measures of fitness as just described, it is also possible to define fitness
relative to other members of the population without explicitly calculating
values for each population member. For example, if our problem domain is to
evolve a chess player we could evaluate the population by allowing individuals
to play tournaments against each other where the winner of the tournament
is deemed the fittest.

Just as biological genotypes encode the results of past evolutionary trials,
the GA search heuristic encodes a history (or memory) as future populations
are developed from the current population. Mathematically, the canonical
GA can be formulated as a finite-dimension Markov chain, wherein each state
corresponds to a configuration of the population of bit strings. The GA is a
Markov process as the only memory that the GA has is that of the fitness of its
population of strings in their last fitness evaluation. Depending on the form of
genetic operators implemented in the algorithm, the transition probabilities
between states will vary. In the canonical GA, the inclusion of a mutation
operator implies that there are no absorbing states in the Markov process and
that all states can potentially be visited.

Evolutionary algorithms, including the canonical GA, can be characterised
as [79]:

x[t + 1] = r(v(s(x[t]))) (3.1)

where x[t] is the population of encodings at iteration t, v(.) is the random
variation operator (crossover and mutation), s(.) is the selection for mat-
ing operator, and r(.) is the replacement selection operator. Once the initial
population of strings encoding solutions has been obtained and evaluated,
a reproductive process is applied in which the encodings corresponding to
the better-quality solutions have a higher chance of being selected for prop-
agation of their genes into the next generation. In the canonical GA (with
fitness-proportionate selection), the expected number of offspring for each en-
coding is given by Pobs

Pave
, where Pobs is the observed performance (fitness) of the

corresponding solution and Pave is the average performance of all solutions in
the current population. Thus high-quality solution encodings may be chosen
for replication several times in a single generation. Over a series of genera-

3.1 Genetic Algorithm 39

tions, the better adapted solutions in terms of the given fitness function tend
to flourish, and the poorer solutions tend to disappear.

Encoded string
(genotype)

Solution
(phenotype)

Fitness value

Decoding step

Fig. 3.1. Decoding of genotype into a solution in order to calculate fitness

0 0 10 0 1 1 1

Binary encoding

1 7

y = 1 + 7 * x1

Fig. 3.2. Two-step decoding of a binary string into two integer values, which for
example, represent the coefficients in a linear model

Therefore the canonical GA can be described as an algorithm that turns one
population of candidate encodings and corresponding solutions into another
using a number of stochastic operators. Selection exploits information in the

40 3 Evolutionary Methodologies

current population, concentrating interest on high-fitness solutions. Crossover
and mutation perturb these solutions in an attempt to uncover better solu-
tions. Mutation does this by introducing new gene values into the population,
while crossover allows the recombination of fragments of existing solutions to
create new ones. It is important to note that the evolutionary process of a
GA operates on the encodings of the solutions, rather than directly on the
solutions themselves. In determining the fitness of these encodings, they must
first be translated into a solution to the problem of interest, the fitness of this
solution is determined, and finally this fitness is associated with the encoding
(Fig. 3.1). Figure 3.2 demonstrates a sample decoding of a binary string to
produce the coefficients for a linear model.

3.1.1 Canonical GA

To provide an overview of the operation of the canonical GA, a flowchart (Fig.
3.3) and description of the steps in the algorithm is provided. The key steps
in the algorithm are:

i. Determine how the solution is to be encoded as a string, and determine
the definition of the fitness function.

ii. Construct an initial population, possibly randomly, of n encodings corre-
sponding to candidate solutions to a problem.

iii. Decode each string into a solution, and calculate the fitness of each solu-
tion candidate in the population.

iv. Implement a selection process to select a pair of encodings correspond-
ing to candidate solutions (the parents) from the existing population,
biasing the selection process in favour of the encodings corresponding to
better/fitter solutions.

v. With a probability pcross, perform a crossover process on the encodings
of the selected parent solutions, to produce two new (child) solutions.

vi. Apply a mutation process, with probability pmut, to each element of the
encodings of the two child solutions.

vii. Store the encodings corresponding to the child solutions in the new (next
generation) population.

viii. Repeat steps (iv)-(vii) until n encodings of candidate solutions have been
created in the new population. Then discard the old population. This
constitutes a generation.

ix. Go to step (iii) and repeat until the desired population fitness level has
been reached or until a predetermined number of generations have elapsed.

3.1 Genetic Algorithm 41

Generate
initial

population of
N strings,

each
encoding a

solution

Select two
parents from

the population

Apply
crossover and

mutation
operators to
create two
children

Decode
strings into

solutions and
evaluate the

fitness of
each

Repeat until
terminating
condition

Repeat until N
children have been

created

Replace
existing

population by
their children

Fig. 3.3. Flowchart of the canonical genetic algorithm

3.1.2 Example of the GA

To provide additional insight into the workings of the canonical GA, a numer-
ical example is now provided. Assume that candidate solutions are encoded
as a binary string of length 8 and the fitness function f(x) is defined as the
number of ones in the bit string (this is known as the OneMax problem). Let

42 3 Evolutionary Methodologies

n = 4 with pcross = 0.7 and pmut = 0.001. Assume also that the initially
generated (random) and evaluated population is that in Table 3.1.

Table 3.1. An example initial random population

Candidate String Fitness

A 00000110 2
B 11101110 6
C 00100000 1
D 00110100 3

Next a selection process is applied based on the fitness of the candidate so-
lutions. Suppose the first selection draws candidates B and C and the second
draws B and D. For each set of parents, the probability that a crossover (re-
combination) operator is applied is pcross. Assume that B and C are crossed
over between bit position one and two (arbitrary) to produce child candidates
E and F (Table 3.2), and that crossover is not applied to B and D.

Table 3.2. Crossover applied to individuals B and C from Table 3.1, after the first
element, to produce the offspring E and F

Initial Parent Candidate B Candidate C
1 1101110 0 0100000

Resulting Child Candidate E Candidate F
0 1101110 1 0100000

Crossover is not applied to B and D, hence the child candidates (G and H)
are clones of the two parent candidates (Table 3.3).

Table 3.3. No crossover is applied to B and D, hence the child candidates G and
H are clones of their parents

Initial Parent Candidate B Candidate D
11101110 00110100

Resulting Child Candidate G Candidate H
11101110 00110100

Finally, the mutation operator is applied to each child candidate with prob-
ability pmut. Suppose candidate E is mutated (to a 0) at the third locus and

3.1 Genetic Algorithm 43

that no other mutations take place. The resulting new population is presented
in Table 3.4.
By biasing selection for reproduction towards more fit parents, the GA has in-
creased the average fitness of the population in this example from 3 (2+6+1+3

4)
to 3.75 (4+4+6+3

4) after the first generation.

Table 3.4. Final new generation of solutions after mutation operator has been
applied

Candidate String Fitness

E 01001110 4
F 10100000 2
G 11101110 6
H 00110100 3

3.1.3 Extending the Canonical GA

The two subsections above describe and provide a simple worked example of a
canonical GA. A large number of variants on this basic algorithm exist, all of
which fall under the GA umbrella. This subsection briefly describes a number
of these variants.

Genotype Encoding

In assessing the utility of a specific genotype, it must first be decoded into
its associated phenotype. Although binary encodings are often used in GAs,
there are multiple ways that binary strings can be decoded to produce integer
or real values. The simplest decoding method is to convert the binary string to
an integer value, which can in turn be converted into a real value if required. A
binary genotype of length n can encode any integer from 0 to 2n−1 (Table 3.5).
If a real-valued output is required, the integer value obtained by decoding the
binary string can be divided by 2n − 1 to obtain a real number in the interval
[0,1]. A real number in any interval a → b can be obtained by taking the result
of the last calculation and rescaling it using the formula a + x(b − a).

Taking an example, a binary string which is eight bits long can encode any
integer between 0 and 255. If we consider the binary string (00000111), this
can be decoded into the integer value 7 (calculated as: 20 × 1 + 21 × 1 + 22 ×
1+23×0+24×0+25×0+26×0+27×0). If instead of an integer value in the
range 0 to 255, a real value in the range 0 → 5 was required, the integer value
could be converted into a real value as follows: 0 + 7

255 × (5 − 0) = 0.027451.
Although the above decoding scheme for a binary string is quite simple,

it can suffer from Hamming cliffs, in that sometimes a large change in the

44 3 Evolutionary Methodologies

genotype is required to produce a small change in the resulting integer value.
Looking at the change in the binary value required to move from an integer
value of 3 to 4 in Table 3.5, it can be seen that the underlying genotype needs
to change in all three bit positions. These Hamming cliffs can potentially
create barriers that the GA could find difficulty in passing. In contrast, other
schemes such as Gray coding reduce this problem. In Gray coding, the object
is to create a code such that a single integer change only requires a 1-bit
change in the binary genotype. This means that adjacent solutions in the
(integer or real-valued) search space will be adjacent in the (binary) encoding
space as well, requiring fewer mutations to discover. The Gray coding rule
starts with a string of all zeros for the integer value zero, and to create each
subsequent integer in sequence the rule successively flips the right-most bit
that produces a new string. Despite the apparent potential benefits of Gray
coding, it will not necessarily produce better results than the canonical binary
coding system.

Table 3.5. Integer conversion for standard and Gray coding

Canonical
Integer Value Binary Code Gray Code

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

For some problems, a real-valued encoding is a more natural representation
than a binary encoding. This raises the question as to what modifications
should be made to the mutation and the crossover operators for the real-valued
case. A simple strategy for modifying mutation is to implement a stochastic
mutation operator, where an element of a real-valued string can be mutated by
adding a small (positive or negative) real value to it. The crossover operator
can be modified so that elements from the string of each parent are averaged
in order to produce the corresponding value in their child. Many mutation
and crossover schemes for real-valued encodings exist.

Measuring Fitness

When applying the GA, an objective function is required for the problem of
interest, and the objective function value for each phenotype is transformed
into a fitness measure using a fitness function. Thus

3.1 Genetic Algorithm 45

F (x) = g(f(x))

where f is the objective function, g transforms the value of the objective
function into a non-negative number, and F is the fitness measure. If the value
of the objective function is always non-negative, the raw objective function
values can be rescaled using a linear equation of the form:

g1 = af1 + b

where a is chosen in order to ensure that the maximum fitness value is a scaled
multiple of the average fitness and b is chosen in order to ensure that the re-
sulting fitness values are non-negative. The reason for using rescaled fitnesses
rather than raw objective function values is to control the selection pressure
in the algorithm (see next subsection). However, simple linear scaling can still
result in high selection pressure and rapid convergence of the population. Al-
ternative transformation methods exist such as sigma scaling and Boltzmann
selection.

Selection Methods

A key issue in designing a good GA for a specific problem is the manage-
ment of the exploration vs exploitation trade-off. The algorithm must utilise,
or exploit, already discovered fit solution encodings, while not neglecting to
continue to explore new regions of the search space which may contain yet-
fitter solution encodings. Choices for the selection process and the diversity
generating operators of mutation and recombination determine the balance
between exploration and exploitation.

The original and the simplest method of selection for reproduction in the
GA is fitness-proportionate selection, whereby the probability that a specific
member of the current population is selected for mating is directly related to
its relative fitness. The selection process is therefore directed towards good
members of the current population.

A problem with this method of selection is that it can lead to premature
convergence of the population of encodings. Fitness-proportionate selection
embeds a high selection-pressure, and can force too much selection of high-
fitness individuals. Commonly, in the early stage of the search process there
is a high variance in the fitness of solution encodings, with a small number
of encodings being notably fitter than the others. These encodings and their
descendants can overrun the entire population, thereby reducing the subse-
quent exploration of the search space. Better selection schemes will encourage
exploitation of high-fitness individuals in the population, without losing di-
versity in the population too quickly.

Several alternative selection methods have been designed to overcome
the problems of fitness-proportionate selection. One computationally efficient
method is that of tournament selection. Under tournament selection, k mem-
bers are chosen randomly without replacement from the population, and the

46 3 Evolutionary Methodologies

fittest of these is chosen as the tournament winner and is ‘selected’ to act as a
parent. Assuming a population of size N , the value of k can be varied within
2, . . . , N . Lower values of k provide lower selection pressure, while higher
values provide higher selection pressure. For example, if k = N , the fittest
individual is always the tournament winner.

Crossover and Mutation

The mutation operator is important in the GA as it ensures that the search
process never stops. At each iteration mutation can potentially uncover useful
novelty. In contrast, crossover ceases to generate novelty once all members of
the population converge to a single string form. The rate of mutation also
has important implications for the utility of selection and crossover. If a very
high rate of mutation is applied, the selection and crossover operators can be
overpowered, and the GA will more closely resemble random search. Hence
the aim is to select a rate of mutation which helps generate useful novelty,
but which does not rapidly destroy good solutions which are being exploited
through selection and crossover. Of course, there is no requirement that the
mutation rate must remain constant during the GA run. One strategy in
designing a GA could be to vary the rate of mutation depending on the degree
of similarity in the population of strings. If the population is converging, the
rate of mutation can be increased, in order to promote greater diversity in the
population.

0 1 0 1 1 1 0 0

0 0 1 1 0 1 0 1

0 1 1 1 0 1 0 0

0 0 0 1 1 1 0 1

Parent 1

Parent 2

Child 1

Child 2

Fig. 3.4. Two-point crossover

Crossover serves two purposes in the GA. First, it allows for the inheritance
of ‘good genes’ or partial solution encodings by the offspring of parents. It also
serves to reduce the search space to regions of greater promise. Crossover can

3.1 Genetic Algorithm 47

0 1 0 1 1 1 0 0

0 0 1 1 0 1 0 1

0 1 1 1 0 1 0 0

0 0 0 1 1 1 0 1

Parent 1

Parent 2

Child 1

Child 2

Fig. 3.5. Uniform crossover, where a random choice is made as to which parent
donates a bit to child 1. Child 2 is then constructed using the bits not selected for
inclusion in child 1

be implemented in a large number of ways. One problem of single (one) point
crossover, is that related components of a solution encoding (schema) which
are widely separated on the string tend to be disrupted when crossover is
applied. One way of reducing this potential problem is to implement two-
point crossover (Fig. 3.4), whereby two positions on the parent strings are
chosen randomly and the segments between the two positions are exchanged.

A popular form of crossover is uniform crossover. One way of implementing
uniform crossover is to compare the two parent strings element by element. In
producing a child string, a random selection is made from each parent when
filling each corresponding locus on the child’s genotype. The process can be
repeated a second time to create a second child, or the second child could be
created using the values not selected when producing the first child (Fig. 3.5).

Another design strategy that is sometimes employed with GAs, particu-
larly if the fitness landscape is likely to be multi-modal, is to use more than
one population. In this implementation, known as the island model, several
separate populations are created and commence their own evolutionary pro-
cess. Periodically, fit individuals are allowed to ‘migrate’ between the sub-
populations. The migrations promote the sharing of the information in good
solution encodings, while maintaining genotypic diversity between the sub-
populations.

Replacement Strategies

In the canonical GA, a generational replacement strategy was adopted,
whereby the entire current population was replaced by the newly created
population of child encodings. Alternative child generation and replacement
strategies include steady state replacement, where only a small number of
children (sometimes only one) are created during each generation, with only

48 3 Evolutionary Methodologies

a small number of the current population, usually the least fit, being replaced
during each iteration of the GA. For example, the worst x members of the cur-
rent population could be replaced by the best x children. Adopting a steady
state replacement strategy ensures that successive populations overlap to a
significant degree.

Another commonly used replacement strategy is elitism whereby the best
member (or several best members) of the current population always survive
into the next population. This strategy ensures that a good individual is not
lost between successive generations.

Some GA applications use crowding operators as a supplement in their
replacement strategy. In order to encourage diversity in the population of
solution encodings, a new child solution is only allowed to enter the population
by replacing the current member of the population which is most similar to
itself. The objective is to avoid having too many similar individuals (crowds)
in the population.

While the above exposition outlines the primary components and princi-
ples upon which the GA is based it is by no means an exhaustive overview of
GAs. For descriptions of additional genetic operators, selection operators, and
advances in GA theory the reader is encouraged to explore the extensive lit-
erature in this area. A sample of notable developments in this field is outlined
in Sect. 3.6.

3.1.4 Schema and Building Blocks

The computational power of GAs results from their explicit and implicit paral-
lel processing capabilities. The explicit parallelisation stems from their mainte-
nance of an entire population of data vectors, rather than a single data vector.
The implicit parallel processing capabilities arise due to the Schema Theorem
[108] which demonstrates that under general conditions, in the presence of
differential selection, crossover and mutation, almost any compact cluster of
components (bits) that provides above-average fitness will grow exponentially
in the population from one generation to the next. Schema are analogous to
templates for different bit combinations. For example in a binary represen-
tation, the schema 1**1 represents all four bit strings which begin and end
with a 1. The symbol *, commonly referred to as a don’t care symbol, is used
as a placeholder for either a 0 or a 1, such that it is irrelevant which of these
symbols appears at these positions of a schema. Two important characteris-
tics of schema are their defining length and their order. The defining length
of a schema is the distance between the two furthest-apart components of the
schema which are not don’t care symbols. The order of a schema is the number
of components which are not ‘don’t care’ symbols. For example, the order of
the above schema is two and its defining length is four. Further examples are
provided in Table 3.6.

The parallel nature of a GA search process makes it less vulnerable to
local optima than traditional hill climbing optimisation methods. Despite the

3.2 Differential Evolution 49

Table 3.6. Example schemata with their order and defining length provided

Schema Defining Order
Length

*0*1 3 2
**1* 1 1
1111 4 4
**** 0 0

good properties of GAs they, like all non-linear optimisation techniques, are
subject to limitations. The methodology is optimising but there is no guar-
antee that an optimal solution will be found in finite time. Progress towards
better solutions may be intermittent rather than gradual. Consequently, the
time required to find a high-quality solution to a problem is not determinable
ex ante.

3.2 Differential Evolution

Differential evolution (DE) [181, 204, 205, 206] is a population-based search
algorithm. The algorithm draws inspiration from the field of evolutionary
computation, as it embeds implicit concepts of mutation, recombination and
fitness-based selection to evolve good solutions to a problem of interest by
manipulating a population of solution encodings. It also borrows principles
from social algorithms (Chps. 5 and 6) in the manner in which new individuals
are generated. Unlike the binary chromosomes typical of canonical GAs, an
individual in DE is generally comprised of a real-valued chromosome.

3.2.1 DE Algorithm

Although several DE algorithms exist, we primarily describe one version of the
algorithm based on the DE/rand/1/bin scheme [204]. The different variants
of the DE algorithm are described using the shorthand DE/x/y/z, where x
specifies how the base vector (of real values) is chosen (rand if it is randomly
selected, or best if the best individual in the population is selected), y is the
number of difference vectors used, and z denotes the crossover scheme (bin for
crossover based on independent binomial experiments, and exp for exponential
crossover).

At the start of the algorithm, a population of N , d-dimensional vectors
Xj = (xi1, xi2, . . . , xid), j = 1, . . . , N , each of which encode a solution, is ran-
domly initialised and evaluated using a fitness function f . During the search
process, each individual (j) is iteratively refined. The modification process has
three steps:

i. Create a variant vector which encodes a solution, using randomly selected
members of the population (mutation step).

50 3 Evolutionary Methodologies

ii. Create a trial vector, by combining the variant vector with j (crossover
step).

iii. Perform a selection process to determine whether the newly-created trial
vector replaces j in the population.

Xj
*

Xj

Xk

Xm

Vj (t+1)

(F=0.5)

Xj
*

Xl

Fig. 3.6. A representation of the differential evolution variety-generation process.
The value of F is set at 0.50. In a simple 2-d case, the child of particle Xj can end
up in any of three positions. It may end up at either of the two positions X∗

j , or at
the position of particle Vj(t + 1)

Under the mutation operator, for each vector Xj(t) a variant vector Vj(t + 1)
is obtained:

Vj(t + 1) = Xm(t) + F (Xk(t) − Xl(t)) (3.2)

where k, l, m ∈ 1, . . . , N are mutually distinct, randomly selected indices, and
all the indices �= j (Xm is referred to as the base vector, and Xk(t) − Xl(t)
is referred to as a difference vector). Selecting the three indices randomly
implies that all members of the current population have the same chance of
being selected, and therefore influencing the creation of the difference vector.
The difference between vectors Xk and Xl is multiplied by a scaling parameter
F (typically F ∈ (0, 2]). The scaling factor controls the amplification of the
difference between Xk and Xl, and is used to avoid stagnation of the search
process.

There are several alternative versions of the above process for creating a
variant vector [204]. It is possible to use more than one difference vector. For
example, five indices could be randomly selected (DE/rand/2/bin), and the
variant vector calculated:

3.2 Differential Evolution 51

Vj(t + 1) = Xm(t) + F (Xk(t) − Xl(t)) + F (Xo(t) − Xp(t)) (3.3)

Another alternative is to include the highest-fitness member of the current
population when calculating the variant vector (DE/best/1/bin), for example:

Vj(t + 1) = Xbest(t) + F (Xk(t) − Xl(t)) (3.4)

This bears similarity with the use of gbest in the particle swarm algorithm
(Chap. 5), as the current best member of the population has an impact on the
generation of all trial vectors. This implicitly increases the selection pressure
in the algorithm. Many alternative methods for selecting a base vector could
be employed including for example, tournament selection.

Index number

 4

 3

 2

 1

 Xj (t)

 d

 c

 b

 a

 Vj (t+1)

 r

 e

 w

 q

 Uj (t+1)

 r

 e

 w

 a rand(1) > CR

rand(2) ≤ CR

rand(3) ≤ CR

4=rndbr

Fig. 3.7. An example of crossover in DE

A notable attribute of the mutation step in DE is that it is self-scaling. The
size/rate of mutation along each dimension stems solely from the location
of the particles in the current population. The mutation step self-adapts as
the population converges leading to a finer-grained search. In contrast, the
mutation process in the canonical GA is typically based on draws from a
separately defined (fixed) probability density function.

Following the creation of the variant vector, a trial vector Uj(t + 1) =
(uj1, uj2, . . . , ujd) is obtained:

Ujk(t + 1) =

{
Vjk(t + 1), if (rand ≤ CR) or (j = rnbr(ind)) ;

Xjk(t), if (rand > CR) and (j �= rnbr(ind)).
(3.5)

where k = 1, 2, . . . , d, rand is a random number generated in the range (0,1),
CR is the user-specified crossover constant from the range (0,1), and rnbr(ind)

52 3 Evolutionary Methodologies

Fig. 3.8. Numerical example of the canonical DE algorithm

is a randomly chosen index chosen from the range (1, 2, . . . , d). The random
index is used to ensure that the trial solution differs by at least one component
from Xj(t).

The resulting trial (child) solution replaces its parent if it has higher fitness
(a form of selection), otherwise the parent survives unchanged into the next
iteration of the algorithm (Fig. 3.6). Figure 3.7 provides an illustration of the
crossover operator in DE, and Fig. 3.8 illustrates a simple numerical example.
In the numerical example, the parent vector is i=1. Three other vectors are
randomly chosen to create the variant vector, and F=1 is assumed. When
crossover is applied between the parent and the variant vector, the first and
the third elements of the variant vector are assumed to combine with the
second element of the parent vector to create the trial or child vector. Finally,
it is assumed that the fitness of the trial vector exceeds that of its parent and
it therefore replaces the parent.

3.2 Differential Evolution 53

Initialise
population

with n
random

real-valued
vectors

For each
vector p

Randomly
select three

other vectors
from the

population

Decode each
vector into a
solution, and
evaluate each

solution

Apply
difference
vector to

base vector

Evaluate the
new trial

vector

Replace
vector p if

trial vector is
better

Until
terminating
condition

Fig. 3.9. A flowchart of a typical DE algorithm

54 3 Evolutionary Methodologies

Xj(t + 1) =

{
Uj(t + 1), if f(Uj(t + 1)) > f(Xj(t));

Xj(t), otherwise.
(3.6)

Figure 3.6 provides a graphic of the adaptive process described above, and an
outline of a typical DE algorithm is presented in Fig. 3.9.

The DE algorithm has three key parameters: the population size (N),
the crossover rate (CR), and the scaling factor (F). Higher values of CR
tend to produce faster convergence of the population of solutions. Typical
values for these parameters are in the ranges, N=50-100 (or five-ten times
the number of dimensions in a solution vector), CR=0.4-0.7 and F=0.4-0.9
for the DE/rand/bin scheme.

3.3 Genetic Programming

Genetic programming (GP) traditionally distinguishes itself from the genetic
algorithm in two fundamental ways. Instead of evolving binary strings which
represent an indirect encoding of a potential solution, in GP evolutionary
search is applied to the solution directly, solutions in this case being computer
programs (or, alternatively, trading systems). In the form of GP popularised
by John Koza [131, 132, 133, 134] these take the form of Lisp S-expressions,
which are represented as a syntax tree (Fig. 3.10). It is to these trees that the
evolutionary search operators such as crossover and mutation are applied. Fig-
ure 3.11 illustrates an example of two parent syntax trees, and demonstrates
how sub-trees can be exchanged during a crossover event.

x

(+ (sin x) (* x 3.14) (/ y x))

x

sin

+

*

x 3.14

/

y

Fig. 3.10. Example S-expression (left) and corresponding syntax tree (right). The
syntax tree decodes into the expression (sin x) + (3.14x) + (y/x), where x and y
are predefined constants

The second fundamental difference is in the variable-length representation
adopted by GP. With GA (and in DE) we adopt a fixed-length encoding,
whereby we fix the number of genes (or bits) that will comprise an individual
at the outset of a run. In GP it is recognised that the length of a solution
program may not be known a priori and as such the number of genes must
itself be open to evolution. Initialisation of a GP population consequently
attempts to generate a diversity not only in the values of the genes (the

3.3 Genetic Programming 55

+

z

z

*

1.0yx

+

+

z

z

*

1.0yx

+

z

*

1.0

+

z y

(ii)(i)

(iii) (iv)

x

+

(v) (vi)

Fig. 3.11. Example syntax trees, (i) and (ii), undergoing a crossover event to
produce two child trees, (v) and (vi). The hashed lines on syntax trees (iii) and (iv)
represent the site at which crossover takes place

primitive symbols of the programming language) but also in the structure of
the individuals.

Function and Terminal Sets

When evolving programs there are a number of issues that must be taken
into consideration. The programs are generated using elements from two sets,
namely, the function and terminal sets. The function set contains functions
that have an arity greater than zero, while the terminal set contains functions
that have an arity of zero, the arity of a function referring to the number of
arguments it can take. For example, the functions sin and not have an arity of

56 3 Evolutionary Methodologies

1, while constants and variables have an arity of zero as they do not take any
arguments. The members of the function and terminal sets must be chosen
such that together they are sufficient, that is, they are powerful enough to
represent a complete solution to the problem at hand. It must also be ensured
that the function and terminal set have the property of closure. That is, each
function should handle gracefully all values it might ever receive as inputs.
For example, a suitable function (denoted by F) and terminal set (T) for a
boolean problem with three input variables is given below.

F = { and, not}
T = { input0, input1, input2 }

The function and terminal sets hold the property of sufficiency, as it can be
shown that all possible boolean functions on the three input variables can be
constructed from the boolean and and boolean not operators alone. Similarly,
boolean function sets { or, not }, { nand } or { nor } are possible alternatives
to meet the property of sufficiency. The closure property is met because the
boolean input values (input0, input1, input2) can all be passed as inputs
to each of the functions in the function set (F), and the output from each
function in F is also a boolean value that can be passed in turn as input to
another function from this set.

As well as including the input variables for the problem at hand, the
terminal set typically includes constant values. The standard approach to the
provision of constants in GP is through ephemeral random constants (ERCs).
A number of ERCs are generated in the initial population within a prespecified
range at the outset of a run of the GP algorithm. When a node in the growing
program is determined to have become a constant, a random value in the ERC
range is generated. After the initial generation, new constants are created
through the recombination of existing ERCs through arithmetic expressions.
It is also possible to target constants within an individual for mutation usually
within a prespecified deviation.

Initialisation Strategy

Once the function and terminal sets are specified, individuals in the population
must be generated using an initialisation strategy. In order to ensure diversity
of both structure and values it is common to adopt the ramped-half-and-half
initialisation. Ramped-half-and-half combines the Grow and Full initialisation
strategies, each of which is used to generate half of the population (Fig. 3.12).
In the Full method, trees are grown randomly such that all branches reach
a predetermined maximum node depth, while in the Grow method trees are
grown randomly with no one branch allowed to exceed the maximum node
depth. In addition to adopting sub-tree crossover, as outlined earlier, amongst
other genetic operators variety can be created through sub-tree mutation. Sub-
tree mutation involves randomly picking a sub-tree, deleting that sub-tree, and

3.3 Genetic Programming 57

then growing a new sub-tree in a random manner similar to the initialisation
process.

x

x

sin *

x 3.14

/

y x

+

y

cos * sin

+

1.27 y x

*

x y

+

+

x y 3.14

sinFull

Grow

x

sin x /

y x

+

*

x

+

y

y

x

+

3.14 y

Fig. 3.12. Example GP population of size 6 created using the ramped-half-and-half
initialisation strategy up to a tree depth of 3

In addition to the input variables constants, and primitive operators spec-
ified in the function and terminal sets, it is possible to incorporate standard
programming constructs such as conditional statements, parameterised func-
tions, iterations, loops, storage/memory, and recursion into a GP individual.
An example GP program containing a conditional expression in both a prefix
Lisp-like S-expression and syntax tree can be seen in Fig. 3.13. Note that the
conditional expression, denoted by the if function at the root of the sub-tree,
is comprised of three components. The first, left-most component is the con-
dition itself, which can be comprised of a complex logical expression which
will return either one of the boolean true or false values. In this example,
depending on the outcome of the logical expression returning either true or
false, the second (the value of x) or third component (value of y) of the con-
ditional expression will be returned, respectively, and subsequently added to
the result of sin(x).

x

sin

+

(+ (sin x) (if (> x 3.14) x y)) if

>

x 3.14

x y

Fig. 3.13. Example GP individual containing a conditional S-expression (left) and
its corresponding syntax tree (right)

58 3 Evolutionary Methodologies

3.3.1 More Complex GP Architectures

In the example GP individuals we have met so far, the programs are comprised
of a single, result-producing function comprised of the whole tree. A wide
range of more sophisticated GP architectures exist, in which the syntax tree
can embed commonly found programming structures and concepts, including
functions, memory, looping and recursion. Each of these is discussed below.

Functions in GP

In programming, and more generally in problem solving, it is useful to decom-
pose the task at hand into a series of smaller and simpler sub-tasks, which
can be reused to solve the problem as a whole. The ability to reuse parts of
solutions can be incorporated into GP individuals using constructs such as
functions, iterations, loops and recursion. To this end it is necessary to in-
troduce a more complex program architecture comprised of multiple branches
including the result-producing branch (RPB). The other branches define, for
example, the functions and iterations that the RPB can utilise in the genera-
tion of the resulting program output.

The typical method to include functions or sub-routines in a GP individual
is through automatically defined functions (ADFs). ADFs are parameterised
functions that can be called in a hierarchical manner, and are defined in
a function-defining branch comprised of the function’s name, the list of its
parameters, and the body of the function. Figure 3.14 outlines the architecture
of a GP individual comprised of a single ADF called ADF0 that receives three
parameters and sums the parameter values that are passed to it. An ADF
is defined using the DEFUN function, and VALUES is a function that returns
whatever value its sub-tree evaluates to. DEFUN simply returns the name of
the function to its parent function (PROGN). The PROGN function evaluates all
of its sub-trees in succession returning the result of evaluating the last (the
right-most) sub-tree, which is referred to as the RPB. The RPB can use any
of the previously defined ADFs when evaluating the result of the program.

An ADF may non-recursively call any previously defined ADF from within
its own body, thus allowing hierarchical ADF evaluation. A succession of ADFs
can thus precede the main RPB in an individual, as outlined in Fig. 3.15.

To ensure that architecturally correct (i.e., only permit non-recursive and
hierarchical ADF calls to previously defined ADFs) individuals are generated
in the initial population separate function and terminal sets must be speci-
fied for the ADFs and RPBs. Taking an example we could define two ADFs
(ADF0 and ADF1), with the following function sets for the RPB, ADF0 and
ADF1, respectively.

FRPB = { if, *, +, -, /, ADF0, ADF1 }
FADF0 = { if, *, +, -, / }

3.3 Genetic Programming 59

+
ADF0

*

x y

x

z

(PROGN (DEFUN ADF0
(LIST ARG0 ARG1 ARG2)
(VALUES + ARG0 ARG1 ARG2)

(VALUES
(* (ADF0 x y z) x))

)

)

PROGN

DEFUN

VALUESLISTADF0

ARG1

VALUES

ARG2ARG1ARG0

ARG0 ARG2

Fig. 3.14. The architecture of an automatically defined function represented in
terms of an S-expression (top) and corresponding syntax tree (bottom). The syntax
tree decodes to (x+y+z)*x

..

LIST

..............

DEFUN

VALUESADF0 LIST

..............

PROGN

RPBDEFUN

VALUESADFN

Fig. 3.15. The architecture of a GP individual including a hierarchy of automat-
ically defined functions (ADF0 to ADFN) and the result-producing branch (RPB)
represented as a syntax tree

FADF1 = { if, *, +, -, /, ADF0 }

The corresponding terminal sets for a problem with three variables might take
the following form where ADF0 is a three-argument function and ADF1 has
two arguments.

TRPB = { x, y, z }
TADF0 = { ARG0, ARG1, ARG2 }
TADF1 = { ARG0, ARG1 }

A particular advantage of using ADFs when applying GP to design a trading
system is that they allow for the easy (multiple) reuse of already discovered
good code modules.

Memory in GP

Memory is implemented in GP in a manner similar to ADFs, using auto-
matically defined storage (ADS), with the addition of two branches to an

60 3 Evolutionary Methodologies

x

SWB0

PROGN

SRB0

+

y

Fig. 3.16. Fragment of an example GP individual containing automatically defined
storage (ADS0)

individual that allow reading and writing to a memory location. Effectively,
the additions of a storage writing branch (SWB) and a storage reading branch
(SRB) are equivalent to adding a new element to an individual’s function set
which allows a newly added memory location to be written to as well as read
from (Fig. 3.16). The type (e.g., named memory, stack, queue, 2-dimensional
array, or list) and dimensionality (number of arguments to address it) are de-
termined (usually randomly) upon creation of the ADS. In Fig. 3.16 a named
memory location (ADS0) with zero dimensionality (i.e., the SRB function
requires no arguments to retrieve the data stored in ADS0) is created.

Looping in GP

Iterations and more generally loops can be incorporated into a GP individual
using automatically defined iterations (ADIs) and automatically defined loops
(ADLs). Similar to ADFs, ADIs and ADLs are defined using a multiple branch
architecture, where their branches occur before the RPB. It is common for a
simplified form of ADIs and ADLs to be adopted where the defined iterations
or loops are invoked only once and prior to the evaluation of the RPB. The
result of evaluating the ADI/ADL branch is made available to the RPB indi-
rectly through storage in a named memory location. There may be multiple
ADIs and ADLs within an individual, and they can refer to previously defined
ADFs.

In the case of ADIs, they are implemented to iterate once over a predefined
data structure such as an array, vector or sequence. As such, the size of the
data structure to iterate over is known and the possibility for infinite loops
to arise is eliminated. An example ADI is given in Fig. 3.17 which has no
arguments, and returns the result of its evaluation indirectly to the result-
producing branch by writing to the named memory location MO. The number
of elements contained in the data structure being iterated over (V) is built
into the ADI function. ADI0 is evaluated as a result of its invocation in the
result-producing branch, with the RPB using the result of evaluating ADI0
by accessing M0.

ADLs implement a general form of iteration comprised of loop initialisation
(LIB), loop condition (LCB), loop body (LBB), and loop update branches

3.3 Genetic Programming 61

x

M0 V

*

PROGN

VALUESLISTADI0

VALUESDEFITERATE

ADI0 +

PROGN

M0

SETM0

Fig. 3.17. Example GP individual containing an automatically defined iteration
(ADI). The result of evaluating ADI0 (multiplying all the values contained in the
vector V) is available to the result-producing branch through the named variable
memory location M0, which the body of ADI0 wrote to using SETM0

0 +

M0 x

VALUES

SETM0

*

READVM0

M1

+

M1 x

SETM1

LENM1

<

IF

PROGN

VALUESDEFLOOP

ADL0

PROGNADL0 LIST SETM1

Fig. 3.18. Example GP individual containing an automatically defined loop (ADL).
As in the ADI example in Fig. 3.17 the result of evaluating ADL0 is available to the
result-producing branch through the named memory location M0, which the body
of ADL0 wrote to using SETM0

(LUB). Figure 3.18 outlines an example ADL where the LIB sets the memory
location M1 to 0; the LCB determines how many iterations over the data
structure should be conducted. After the LBB is evaluated on each iteration
the LUB is evaluated, which increments the value of M1 (in this example this
ensures that an infinite loop will not arise as the LCB is checking the value
of M1 to determine when to terminate the loop). In the LBB, (READV M1)

reads the M1th value of the data structure (V) being looped over. The result
of evaluating ADL0 is available to the RPB through the value stored in the
named memory location M0. To prevent infinite loops occuring, generally a
timeout strategy is adopted whereby the evaluation of an individual is halted

62 3 Evolutionary Methodologies

after a predetermined time limit (or a maximum number of iterations) has
been reached.

RGB

PROGN

LIST

VALUESDEFRECURSION

ADR0

ARG0

RCB RBB RUB
ADR0

7

Fig. 3.19. The architecture of automatically defined recursion (ADR)

Recursion in GP

Recursion is made possible in GP through an automatically defined recursion
(ADR) architecture (Fig. 3.19). There are four components to ADRs, namely
recursion condition (RCB), recursion body (RBB), recursion update (RUB),
and recursion ground (RGB) branches. To prevent infinite recursion a limit is
placed on the number (or depth) of the recursive calls that are allowed within
an individual. When timeout limits in the case of ADIs and ADLs, or depth
limits in the case of ADRs are violated the individual can be selected against
by punishment with a large fitness penalty. Figure 3.19 outlines ADR in an
individual where the DEFRECURSION function is used to define the recursive
function ADR0 that takes a single parameter (ARG0). The RCB determines if
recursion is continued by returning a positive value, or in the case of returning
a negative value recursion is halted. In the event recursion is halted the fourth
(right-most) RGB branch is evaluated. The RBB branch normally contains
a recursive call to the function itself, and when the evaluation of the RBB
finishes the RUB branch is evaluated.

During initialisation of a GP population either the architecture of the program
is prespecified, that is the presence (or absence) of ADFs, ADSs, ADIs/ADLs
and ADRs and their quantities are predetermined, or their incorporation (dele-
tion) can be left open to evolutionary search. In order to allow the search pro-
cess to add, delete or modify these constructs architecture-altering operations
were introduced specifically for each architecture type [133]. For example, in
the case of ADFs, it is possible to create, duplicate or delete an ADF, and even
to create, duplicate or delete arguments to an existing ADF. Special attention
must also be paid to the crossover operator, which must be implemented to

3.4 Combining EA and MLP Methodologies 63

ensure that legal architectures are generated as a consequence of a crossover
event.

A great deal of literature exists on genetic programming and the evolution of
programs in general. The interested reader is referred to the following as a
good starting point for further investigations [15, 131, 132, 133, 134, 136, 137,
138]. In Sect. 3.6 some of the more recent developments in genetic program-
ming are discussed.

3.4 Combining EA and MLP Methodologies

Biologically inspired algorithms need not be applied on a stand-alone basis.
They can also be combined in order to benefit from their complementary
strengths. As an example of this, we will discuss a hybrid GA-MLP method-
ology, but it should be noted that a DE-MLP, or even GP-MLP, could also
be used.

Despite the apparent dissimilarities between GAs and MLPs, the meth-
ods can usefully complement each other by combining the non-linear mapping
capabilities of a MLP with the optimising capabilities of a GA. The construc-
tion of a MLP entails the selection of model inputs and model structure from
many alternatives, and represents a combinatorial problem. An evolutionary
algorithm such as the GA provides scope to automate this step.

There are several ways that GAs can be combined with a MLP, depending
on what the modeller wishes to achieve. The first possibility is to use the GA
to uncover a subset of good-quality model inputs from a possibly large set of
potential inputs. In a time-series model, this could correspond to uncovering
good-quality lag periods. A second use of GAs is to evolve the structure of
a MLP network. Third, a GA could be used to evolve the choice of learning
algorithm and relevant parameters for that algorithm. Therefore a GA could
be used to select between choices for any or all of the following:

• model inputs,
• number of hidden layers in the MLP,
• number of nodes in each hidden layer,
• nature of transfer functions at each node,
• connection structure between each node, and
• weights between each node.

The general evolutionary process is the same for all cases. A chromosome
(string) is defined to represent the features of the MLP which are to be evolved.
This chromosome may have a binary, real-valued or mixed form. Consider a
case where the GA is evolving a feature of a MLP other than its connection
weights. One possible algorithm (from many) is (Fig. 3.20):

64 3 Evolutionary Methodologies

i. Decode the string into a MLP structure.
ii. Initialise the weights.
iii. Train the MLP using the backpropagation algorithm.
iv. Determine the predictive accuracy (fitness) of the resulting MLP.
v. Perform fitness-based selection to create a new population of genotypes.
vi. Create diversity in the chromosomes of the new population (crossover/mutation

operators).
vii. Replace the old population with the new one.
viii. Repeat above steps until stopping criteria are met.

Genotype

MLP structure

MLP training

DecodingFitness
information

Selection, crossover & mutation

Fig. 3.20. An example of a GA-MLP hybrid. The hybrid uses evolutionary learning
to uncover a good structure, but the weights are obtained using the backpropagation
algorithm

Evolving the Selection of Inputs

If the intention is solely to evolve good sets of inputs the choice of represen-
tation is straightforward, a binary string N items long, where each element
of the string is an indicator (0,1) as to whether each of the N inputs is in-
cluded or excluded. For each selection of inputs, the MLP is trained and an

3.4 Combining EA and MLP Methodologies 65

error measure obtained, which is then used to guide the evolutionary process
in its search for the best set of inputs. A particular advantage of having the
GA determine the selection of input variables is that it is possible to have a
variable included through the action of the mutation operator, at all stages of
the training process, even if it has been previously deselected. This may allow
the testing of a new grouping of variables, not all of which were present the
last time the (reselected) variable was included. This property could be very
useful if there are subtle, non-linear interactions between the input variables.

Evolving the Weights

If the objective is to evolve the weights for a MLP of fixed structure and fixed
inputs, the weights can be directly encoded onto a chromosome. In direct en-
coding, the network architecture is effectively encoded in a chromosome and it
is possible to recreate the exact MLP from this (Fig. 3.21). At the commence-
ment of the training process, the chromosome is decoded to give the weights
for each connection in the resulting network. The network is then trained, and
an error measure is obtained for it. Low errors represent high fitness, and the
GA acts to select good sets of weights, and creates variants on these in an
effort to uncover better sets of weights in future generations of the algorithm.
Although the above method can be used to evolve weights for a MLP, it will
not necessarily outperform more-specialist weight-adjustment techniques for
training MLPs (such as quickprop [72]).1 Weight evolution does have clear ad-
vantage in cases where backpropagation methods cannot be used, for example
when a specialist error measure is required which is not a differentiable func-
tion, or in cases which backpropagation finds hard, for example multi-modal
error surfaces.

One important consideration when developing hybrid GA-MLPs is that
the choice of representation has implications for the optimal design of the
diversity-generating operators in the evolutionary component of the hybrid.
In particular, the crossover operator must try to avoid disrupting good ele-
ments (building blocks) of a MLP’s design once they are uncovered. Learning
in MLPs is distributed across weights. Hence insensitively applied crossover,
where weight values from different MLPs are stochastically recombined, can
produce poor results. If we take one specific case as an example, where the
goal is to apply crossover to two MLPs with the same structure and inputs in
an effort to evolve good weights for the MLP, one simple approach is to define
a basic building block as being a hidden or output node along with all its
incoming connection weights. Hence a child MLP structure can be obtained
from two parent MLPs by applying a crossover operation, which swaps hid-
den or output nodes along with their incoming connection weights between

1The basic idea of quickprop is to use the second derivative of the error function
to attempt a direct step to the error minimum. It assumes that the error surface is
locally quadratic.

66 3 Evolutionary Methodologies

2

8

-2

1

4

10100 11000 00000 10010 00100 10001

Fig. 3.21. Binary encoding of weights in a MLP. The first bit indicates whether
the weight is negative (0) or positive (1), with the remaining four bits (reading from
left to right) encoding the weight value. The weight 00000 indicates no connection
between two nodes

the two parents. The mutation process can be applied to the same building
block, whereby one or more of the hidden/output nodes of the child MLP
are randomly selected, and a real-valued mutation is applied to the incoming
connection weights of that node.

Although the above definition of a building block is intuitive, the efficiency
of the crossover operator is impacted by the permutation problem, also known
as the competing conventions problem [105, 155]. Consider two high-fitness
MLPs which are identical, except that their input or hidden nodes are per-
mutated in a different order. If these MLPs are encoded as a linear binary
string, a crossover operation between the two MLPs is likely to be disruptive,
producing child MLPs of lower fitness than either parent.

Evolving the Connection Structure

A more complex task is to use the GA to evolve the structure for a MLP.
In these cases, the modeller is faced with selecting a way to represent the
range of possible network structures in the chromosome. One way of encoding
the connection topology is by means of a connection matrix. This matrix
is of size N * N , where N is the maximum number of possible nodes in
the network (Figs. 3.22 and 3.23). The connection matrix consists of (0,1)
values, each indicating whether that connection is used or turned on in that
network. This representation implicitly allows the GA to select the number of
hidden nodes it wishes to use, as a hidden node which is not connected to any

3.4 Combining EA and MLP Methodologies 67

input or output nodes is effectively deselected. If N is large, the feasibility
of employing direct encoding declines, as a connection matrix for N nodes
will scale at a rate of O(N2). Another problem that can arise when MLP
architectures are being evolved without any weight information is that of noisy
fitness evaluation. This occurs because the fitness of the resulting phenotype
also depends on the initialisation of the weights at the start of the (non-
evolutionary) training process. It is possible that a good architecture could
obtain a low fitness, just because of a poor weight initialisation, and therefore
not be selected for subsequent generations. One way around this problem is
to train the MLP using several different weight initialisations, and use the
average of these results as the fitness of the genotype. Another way around
this problem is to evolve both the architecture and the weights simultaneously
(see Chapt. 12 for an example of this). Yao (1999) [224] provides a good review
of the technical issues involved in creating hybrid GA-MLP systems.

Recent approaches to evolving neural networks include enforced sub-
populations (ESP) [94, 95] and NEAT (neuroevolution of augmenting topolo-
gies) [203]. In ESP, rather than evolving chromosomes which encode complete
networks, a series of separate sub-populations are evolved, each of which en-
codes the incoming and outgoing weights of a single (hidden) node. A complete
network can be formed by selecting a node from each population, and an evo-
lutionary process is applied to improve the quality of each sub-population over
time. In the NEAT approach, both the topology and weights of the network
are evolved starting from a minimal network size.

Indirect Encodings

Apart from direct encoding schemes, where some aspect of the MLP’s struc-
ture is directly encoded onto a genotype, it is possible to generate MLPs using
an indirect encoding. These encodings may specify a set of construction rules
that are iteratively applied to produce the MLP. Examples of this approach
include the grammatical/cellular encoding methods [99, 127]. In these meth-
ods, the basic building blocks of the network are encoded in the form of a
grammar (a set of rules which can be applied to produce a structure, in this
case a complete MLP), and MLPs are developed by stringing together the
building blocks defined in the grammar. A detailed discussion of grammars,
and how they can be used to develop structures as diverse as computer pro-
grams or trading systems, is provided in Chapt. 4 which discusses grammatical
evolution.

In summary, the combination of an evolutionary algorithm with a MLP in-
corporates the complementary strengths of two distinct methodologies. The
strengths of MLPs (parallel computation, universal approximator properties,
robustness to noise, and adaptive learning) are combined with the global
search potential of a GA. It is also possible to use a GA to integrate the
prediction of a series of MLPs, perhaps each trained using different input

68 3 Evolutionary Methodologies

1

4

3

2

5

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

From
node:

To node:

00110 010 01 1

1 2 3 4 5

1

2

3

4

5

Fig. 3.22. A feedforward MLP connection matrix. The matrix can be concatenated
into a binary string. Due to the feedforward architecture, the binary string only needs
to contain the upper-right triangle of the matrix

data. The outputs from the MLPs could be integrated by applying different
weights to the predictions of each individual MLP, using the GA to evolve
the weighting factors. More generally, the combination could be of multiple
systems which use a variety of predictive methodologies. Finally, although the
above section discussed the potential for combining GAs and MLPs, many of
the same concepts could be applied to evolve other forms of neural networks.

3.5 Applying EAs to Evolve Trading Rules

A key advantage of adopting an evolutionary approach to designing a trading
system, is that it is capable of simultaneously evolving both the trading rule
and good parameters for that rule. This provides a powerful extension to
methods such as MLPs, where the modeller must implicitly select the rule
structure through selection of which inputs will be used, and by selection of
what model structure the MLP will have (how many layers, how many hidden
layer nodes, etc.).

Let us examine the case where an EA is used to evolve good parameters
for a prespecified trading rule. Suppose a trader wanted to develop a rule

3.5 Applying EAs to Evolve Trading Rules 69

1

4

3

2

5

0 0 1 1 0

0 0 0 1 0

0 0 1 0 1

0 0 0 0 1

0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

From
node:

To node:

00110 00010 00101 00001 00000

Time-delayed feedback

1 2 3 4 5

1

2

3

4

5

Fig. 3.23. A recurrent architecture encoded as a binary string. As feedback arcs
are permitted, the binary string must encompass the entire connection matrix

based on the crossover of the moving average of two timeseries of historic
price information for a financial asset. A simple rule could take the form

IF

(
x day moving average of price

y day moving average of price
> z

)
THEN buy ELSE sell

(no claim is made that a such a simple rule will generate profits!). The object
is to determine the values of x, y and z which will produce the best results. A
random population of binary strings can be initialised to encode real values for
x, y and z. The fitness of each string can then be determined by translating the
binary string into three real numbers, and using historical market information
to determine what the fitness of the trading rule would have been in a historic
period. Applying the usual evolutionary process already outlined, good values
for the three parameters can be determined.

70 3 Evolutionary Methodologies

More generally, the EA can be used to evolve the trading rule as well as
parameters for the rule. For example, suppose a modeller specifies a broad
format for the desired rules a priori. An example could be:

IF [INDICATOR1(time) (<, >,=) VALUE1]

(AND, OR, NOT) [INDICATOR2(time) (<, >,=) VALUE2]

THEN (BUY, SELL, DO NOTHING)

In this rule format the EA is allowed to choose from multiple indicators (for
example moving averages of price or trading volume data), associated time
variables (or lags) for each indicator, trigger values for each indicator, the
form of the mathematical operator between the indicator and the trigger value
(<, >,=), how the tests for each indicator should be linked (choice of AND,
OR, NOT functions) and, finally, the trading signal to be generated for that
rule. The choice of indicator, mathematical function, boolean function and
trading signal can all be encoded as integers or as binary values which are
decoded into integers. During the EA runs, different vectors of these values can
be converted into trading rules, and the fitness of each rule can be determined
by applying it to the training dataset. In turn, the differential fitnesses of
the resulting trading rules drives the evolutionary process, leading to the
uncovering of better trading rules over time.

3.6 Recent Developments in Evolutionary Computation

An important new direction in genetic algorithm research stems from the
recognition of the limited scalability of the canonical GA when it is applied to
problems of increasing difficulty. It has been recognised that the success of a
GA is dependent upon facilitating the proper growth and mixing of building
blocks, which is not achieved by problem-independent recombination opera-
tors [92, 214]. The algorithms emerging from this area of research are dubbed
competent GAs. Competent GAs seek to perform a more intelligent search by
respecting the functionally important linkages between the constituent com-
ponents of a solution in order to prevent the disruption of potentially useful
building blocks. As an example of this, consider a binary string encoding
which is N bits long, where the first and the last bit must both be ‘1’ if the
string is to have high fitness. If basic single-point crossover is applied to two
parents, one of which already has the correct (‘1’) value in these locations,
it is quite possible that neither child will inherit the good genes from that
parent. In other words, because no attention has been paid to the linkage
structure between the elements of the string, the crossover operator has acted
in a destructive manner. Ideally, the aim is to codesign the encoding rep-
resentation and the diversity-generating operators in order to minimise this
problem. More recently, the GP community is beginning to apply ideas from
competent GA in designing GP algorithms [190, 196].

3.7 Summary 71

Earlier in the chapter we introduced a popular form of tree-based GP [131].
However, prior to its introduction a number of alternative representations had
been adopted (for example see [45, 83, 84]) and since then a large variety
of representations have been examined including graphs, linear structures,
grammars and even hybridisations of these. Notable examples include linear
GP [14, 162], PADO (Parallel Algorithm Discovery and Orchestration) [212],
graph and linear-graph GP [120, 121], Cartesian GP [152], and grammar-based
GP systems (e.g., [99, 106, 174, 218, 222]). While the issue of representation
is not unique to GP, indeed more broadly it transcends machine learning
as a whole, the question as to what makes a good representation for EC is
an open one and some attempts are now being initiated to formalise this
research [185]. In recent years there has been a great deal of research on schema
theories for genetic programming, and it is being recognised that these theories
demonstrate a commonality between the various representations adopted in
EC, with GP schema theories being considered supersets of GA schema theory
[138].

One hybrid representation combining linear chromosomes and grammars,
grammatical evolution, has attracted notable interest in recent years [81, 174,
176, 177, 178, 220]. Grammatical evolution provides an elegant mechanism to
ensure the all-important GP property of closure whilst allowing the removal
of the restriction of programs to a single data type. In addition, grammati-
cal evolution provides a convenient manner in which to incorporate domain
knowledge into the representation of a solution through its inclusion in the
input grammar.

3.7 Summary

This chapter presented an introduction to a family of algorithms inspired
by an evolutionary metaphor, evolutionary algorithms. Specific EA instances
were examined, namely genetic algorithms, differential evolution and genetic
programming. Following two examples of how EAs can be applied for financial
prediction purposes, we outlined some of the more recent developments in EC.
Our presentation of evolutionary computation continues in Chap. 4 with an
introduction to the grammatical evolution framework.

4

Grammatical Evolution

This chapter provides an introduction to grammatical evolution (GE), a form
of grammar-based genetic programming which has been applied to a number of
problem domains including the evolution of computer programs and financial
prediction.

In addition to the standard set of evolutionary principles adopted in evolu-
tionary computation, as described in Chap. 4, GE further extends the biolog-
ical analogy by employing principles from genetics that have been uncovered
by molecular biologists. The most significant of these is the adoption of a
distinction between the genotype and phenotype similar to that which ex-
ists in Nature. That is, through a mapping process the genetic material (the
genotype) contains the instructions that are used to control the development
and day-to-day operation of a living organism (the phenotype). The molecules
making up the genetic material (DNA) are distinct from the molecules respon-
sible for the phenotype (proteins).

It is in this notion of a genotype-phenotype mapping that the use of a
grammar is exploited. The grammar contains the rules governing how the
development of the phenotype is conducted, and as such can contain domain
knowledge biasing the form a phenotypic solution can take.

In this chapter we will introduce the underlying biological principles upon
which GE is based, we provide an example of how GE operates, and draw the
reader’s attention to some of the more recent developments in GE.

4.1 Grammatical Evolution

GE is an evolutionary algorithm that can evolve computer programs, rulesets
or more generally sentences in any language [166, 173, 174, 189]. Rulesets
could be as diverse as a regression model or a trading system for a financial
market. Rather than representing the programs as syntax trees, as in GP [131],
a linear genome representation is used in conjunction with a grammar. Each

74 4 Grammatical Evolution

individual, a variable-length binary string, contains in its codons (groups of 8
bits) the information to select production rules from a grammar.

4.1.1 Biological Analogy

The GE system is inspired by the biological process of generating a protein
from the genetic material of an organism. Proteins are fundamental in the
proper development and operation of living organisms and are responsible for
traits such as eye colour and height [141].

The genetic material (usually DNA, deoxyribonucleic acid) contains the
information required to produce specific proteins at different points along
the molecule. For simplicity, consider DNA to be a string of building blocks
called nucleotides, of which there are four, named A, T, G and C, for adenine,
tyrosine, guanine and cytosine respectively. Groups of three nucleotides, called
codons, are used to specify the building blocks of proteins. These protein
building blocks are known as amino acids, and the sequence of these amino
acids in a protein is determined by the sequence of codons on the DNA strand.
The sequence of amino acids is very important as it plays a large part in
determining the final three-dimensional structure of the protein, which in
turn has a role to play in determining its functional properties.

In order to generate a protein from the sequence of nucleotides in the
DNA, the nucleotide sequence is first transcribed into a slightly different for-
mat, a sequence of elements on a molecule known as RNA (ribonucleic acid).
Codons within the RNA molecule are then translated to determine the se-
quence of amino acids that are contained within the protein molecule. The
application of production rules to the non-terminals of the incomplete code
being mapped in GE is analogous to the role amino acids play when being
combined together to transform the growing protein molecule into its final
functional three-dimensional form.

The result of the expression of the genetic material as proteins in conjunc-
tion with environmental factors is the phenotype. In GE, the phenotype is a
sentence(s) in some language (e.g., a program in the C programming language)
that is generated from the genetic material (the genotype). This is unlike the
standard method of generating a solution (e.g., a program in the case of GE)
directly from an individual in an evolutionary algorithm by explicitly encod-
ing the solution within the genetic material. Instead, a many-to-one mapping
process is employed.

Figure 4.1 compares the mapping processes employed in GE and biological
organisms. Through the adoption of a genotype-phenotype mapping process
coupled to the use of a grammatical representation, GE can take advantage
of its modular framework in a number of ways. Benefits include:

• A separation of the search (binary strings) and solution spaces (sentences)
which removes the necessity to exclusively adopt a simple variable-length

4.1 Grammatical Evolution 75

TRANSCRIPTION

TRANSLATION

DNA

RNA

Acids
Rules

Grammatical Evolution

Protein

Integer String

Binary String

Amino

Biological System

Phenotypic Effect

Program /
Function

Executed Program

Fig. 4.1. A comparison between the grammatical evolution system and a biological
genetic system. The binary string of GE is analogous to the double helix of DNA,
each guiding the formation of the phenotype. In the case of GE, this occurs via the
application of production rules to generate the terminals of the compilable program.
In the biological case by directing the formation of the phenotypic protein by deter-
mining the order and type of protein subcomponents (amino acids) that are joined
together

genetic algorithm (or even any evolutionary algorithm!) as the search en-
gine. The search operators of the evolutionary algorithm themselves (e.g.,
the genetic operators of crossover and mutation) operate on an abstraction
of the phenotype and as such do not have to take into consideration issues
such as syntactic correctness of the phenotype, as the mapping process
can be used to ensure this occurs automatically.

• An abstraction of a program’s representation (a grammar) which can be
used in a plugable manner to generate sentences in arbitrary languages.

76 4 Grammatical Evolution

• Efficiency gains for an evolutionary search are possible through the adop-
tion of the many-to-one mapping and the degenerate genetic code. This
can be achieved by allowing neutral evolution to occur. Neutral evolution
occurs when there are changes at the genotype level which are neutral
or nearly neutral with respect to the fitness of the phenotype. For exam-
ple, by allowing the functionality of the phenotype to be preserved while
changes to the genotype occur, the population can potentially traverse
otherwise infeasible regions of the search space. A further consequence of
the many-to-one mapping is the maintenance of genetic diversity within
a population by allowing many different genotypes to represent the same
phenotype, thus helping to prevent loss of genetic material and premature
convergence.

We will now present an overview of how the genotype-phenotype mapping
process occurs in GE through the mapping of a sample individual.

4.1.2 Mapping Process

When tackling a problem with GE, a suitable BNF (Backus-Naur form) gram-
mar definition must initially be defined. The BNF can be either the specifi-
cation of an entire language or, perhaps more usefully, a subset of a language
geared towards the problem at hand.

In GE, a BNF definition is used to describe the output language to be
produced by the system. BNF is a notation for expressing the grammar of a
language in the form of production rules. BNF grammars consist of terminals,
which are items that can appear in the language, e.g., binary boolean operators
and, or, xor and nand, unary boolean operators not, constants, true and
false, etc., and non-terminals, which can be expanded into one or more
terminals and non-terminals.

For example the grammar below can be used to generate boolean expres-
sions, and <expr> can be transformed into one of three rules. It can become
either (<expr> <biop> <expr>), <uop> <expr>, or <bool>. A grammar can
be represented by the tuple {N, T, P, S}, where N is the set of non-terminals,
T the set of terminals, P a set of production rules that maps the elements of
N to T , and S is a start symbol which is a member of N . When there are a
number of productions that can be applied to one element of N the choice is
delimited with the ‘|’ symbol. For example

N = {<expr>, <biop>, <uop>, <bool>}

T = {and, or, xor, nand, not, true, false, (,)}

S = {<expr>}

4.1 Grammatical Evolution 77

And P can be represented as:

(A) <expr> ::= (<expr> <biop> <expr>) (0)

| <uop> <expr> (1)

| <bool> (2)

(B) <biop> ::= and (0)

| or (1)

| xor (2)

| nand (3)

(C) <uop> ::= not

(D) <bool> ::= true (0)

| false (1)

The code produced will consist of elements of the terminal set T . The
grammar is used in a developmental approach whereby the evolutionary pro-
cess evolves the production rules to be applied at each stage of a mapping
process, starting from the start symbol, until a complete program is formed.
A complete program is one that is comprised solely from elements of T .

As the BNF definition is a plug-in component of the system, it means that
GE can produce code in any language thereby giving the system a unique
flexibility. For the above BNF grammar, Table 4.1 summarises the production
rules and the number of choices associated with each.

Table 4.1. The number of choices available from each production rule

Rule
Number Choices

A 3
B 4
C 1
D 2

The genotype is used to map the start symbol onto terminals by reading
codons of 8 bits to generate a corresponding integer value, from which an ap-
propriate production rule is selected by using the following mapping function:

Rule = c mod r

where c is the codon integer value, and r is the number of rule choices for the
current non-terminal symbol.

78 4 Grammatical Evolution

Consider the following rule from the above sample grammar, i.e., given the
non-terminal <biop>, which describes the set of binary operators that can be
used, there are four production rules to select from.

(B) <biop> ::= and (0)

| or (1)

| xor (2)

| nand (3)

If we assume the codon being read produces the integer 6, then

6 mod 4 = 2

would select rule (2) xor. That is, <biop> is replaced with xor. Each time a
production rule has to be selected to transform a non-terminal, another codon
is read. In this way the system traverses the genome.

During the genotype-to-phenotype mapping process, it is possible for in-
dividuals to run out of codons, and in this case the wrap operator is applied
which results in returning the codon reading head back to the first codon in
the individual. As such codons are reused when wrapping occurs. This is quite
an unusual approach in evolutionary algorithms as it is entirely possible for
certain codons to be used two or more times. This technique of wrapping the
individual draws inspiration from the gene-overlapping phenomenon that has
been observed in many organisms [141].

In GE each time the same codon is expressed it will always generate the
same integer value, but, depending on the current non-terminal to which it
is being applied, it may result in the selection of a different production rule.
This feature is referred to as intrinsic polymorphism. What is crucial, how-
ever, is that each time a particular individual is mapped from its genotype
to its phenotype the same output is generated. This is the case because the
same choices are made each time. It is possible that an incomplete mapping
could occur, even after several wrapping events, and typically in this case the
mapping process is aborted and the individual in question is given the lowest
possible fitness value. The selection and replacement mechanisms then oper-
ate accordingly to increase the likelihood that this individual is removed from
the population.

An incomplete mapping could arise if the integer values expressed by the
genotype were applying the same production rules repeatedly. For example,
consider an individual with three codons, all of which specify rule (0) from:

(A) <expr> ::= (<expr> <biop> <expr>) (0)

| <uop> <expr> (1)

| <bool> (2)

Even after wrapping, the mapping process would be incomplete and would
carry on indefinitely unless terminated. This occurs because the nonterminal

4.1 Grammatical Evolution 79

<expr> is being mapped recursively by production rule (0), i.e., it becomes
(<expr> <biop> <expr>). Therefore, the leftmost <expr> after each applica-
tion of a production would itself be mapped to a
(<expr> <biop> <expr>), resulting in an expression continually growing as
follows: ((<expr> <biop> <expr>) <biop> <expr>) followed by
(((<expr> <biop> <expr>) <biop> <expr>) <biop> <expr>) and so on.
Such an individual is dubbed invalid as it will never undergo a complete
mapping to a set of terminals. For this reason an upper limit on the number
of wrapping events that can occur is imposed. During the mapping process,
therefore, beginning from the left-hand side of the genome codon integer values
are generated and used to select rules from the BNF grammar, until one of
the following situations arise:

i. A complete program is generated. This occurs when all the non-terminals
in the expression being mapped are transformed into elements from the
terminal set of the BNF grammar.

ii. The end of the genome is reached, in which case the wrapping operator
is invoked. This results in the return of the genome reading frame to the
left-hand side of the genome once again. The reading of codons will then
continue unless an upper threshold representing the maximum number of
wrapping events is reached during this individual’s mapping process.

iii. In the event that a threshold on the number of wrapping events is reached
and the individual is still incompletely mapped, the mapping process is
halted, and the individual is assigned the lowest-possible fitness value.

To reduce the number of invalid individuals being passed from generation
to generation, a steady-state replacement mechanism is commonly employed.
One consequence of the use of a steady-state method is its tendency to main-
tain fit individuals at the expense of less fit, and, in particular, invalid individ-
uals. Alternatively, a repair strategy can be adopted, which ensures that every
individual results in a valid program. For example, in the case that there are
non-terminals remaining after using all the genetic material of an individual
(with or without the use of wrapping) default rules for each non-terminal can
be prespecified that are used to complete the mapping in a deterministic fash-
ion. Another strategy is to remove the recursive production rules that cause
an individual’s phenotype to grow, and then to reuse the genotype to select
from the remaining non-recursive rules.

4.1.3 Mapping Example

Consider the following genome, represented as a series of integer-valued
codons:

42 22 6 104 70 31 13 4 25 9 3 86 44 48 3 27 4 111 56 2

80 4 Grammatical Evolution

We will demonstrate the application of this genome to the grammar presented
below, which could be used to generate a simplified trading system. The trad-
ing system has ten possible input variables (var0 → var9), and three trading
signals can be generated by the system: buy, sell, or do nothing. The start
symbol (<S>) for the grammar from which the mapping process commences
is the non-terminal <tradingrule>.

<S> ::= <tradingrule>

<tradingrule> ::= if(<signal>) {<trade>;} else {<trade>;}

<signal> ::= <value> <relop> <var>

| (<signal>) AND (<signal>)

| (<signal>) OR (<signal>)

<value> ::= <int-const> | <real-const>

<relop> ::= <= | >=

<trade> ::= buy

| sell

| do-nothing

<int-const> ::= <int-const><int-const>

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<real-const> ::= 0.<int-const>

<var> ::= var0 | var1 | var2 | var3 | var4

| var5 | var6 | var7 | var8 | var9

As there is only one production rule for <tradingrule> it is automatically
replaced with its right-hand side (42 mod 1 = 0). Our developing trading rule
becomes:

if(<signal>) {<trade>;} else {<trade>;}

Taking the left-most non-terminal <signal> there are three possible replace-
ments. The codon reading head moves one codon to the right and now is above
‘22’.

42 22 6 104 70 31 13 4 25 9 3 86 44 48 3 27 4 111 56 2

Reading the next codon value determines that we use the second produc-
tion rule (22 mod 3 = 1), which allows the logical AND of two or more infix
expressions . This results in the following:

if((<signal>) AND (<signal>)) {<trade>;} else {<trade>;}

4.1 Grammatical Evolution 81

Again, taking the left-most non-terminal <signal> there are three choices.
The next codon value dictates that we replace this <signal> with a single
relational expression (i.e., 6 mod 3 = 0) giving:

if((<value> <relop> <var>) AND (<signal>)) {<trade>;}

else {<trade>;}

According to the next codon value (104 mod 2 = 0) the non-terminal <value>
is replaced with an integer (<int-const>). The development of <int-const>
proceeds as follows:

70 mod 10 = 0 results in the constant becoming a double-digit integer
(i.e., <int-const><int-const>). The left-most <int-const> becomes 1
by 31 mod 10 = 1 and the next <int-const> becomes 3 by 13 mod 10 = 3.

The developing trading rule now has the form:

if((13 <relop> <var>) AND (<signal>)) {<trade>;}

else {<trade>;}

<relop> is replaced with <= according to 4 mod 2 = 0, and the following
<var> becomes var5 (i.e., 25 mod 10 = 5) resulting in:

if((13 <= var5) AND (<signal>)) {<trade>;}

else {<trade>;}

By 9 mod 3 = 0 the next <signal> becomes a single relational expres-
sion (<value><relop><var>) and its <value> component is replaced with
a <real-const> according to 3 mod 2 = 1. The <real-const> is expanded
to become 0.64 by reading the following two codon values (86 mod 10 = 6
and 44 mod 10 = 4). The relational operator becomes <= (48 mod 2 = 0), and
var3 replaces <var> (3 mod 10 = 3).

Finally, we use the remaining codons to determine the fate of the two
<trade> non-terminals in:

if((13 <= var5) AND (0.64 <= var3)) {<trade>;}

else {<trade>;}

The left-most <trade> becomes a buy() according to 27 mod 3 = 0, while
the final <trade> is replaced with sell() (i.e., 4 mod 3 = 1). The position of
the codon reading head is illustrated by the bold character below.

42 22 6 104 70 31 13 4 25 9 3 86 44 48 3 27 4 111 56 2

The three leftover codons are unused during the mapping process and are
simply ignored, and consequently are referred to as introns as they do not
impact on the function of the phenotype. The final trading system is then
comprised of the following rule:

82 4 Grammatical Evolution

if((13 <= var5) AND (0.64 <= var3)) {buy();}

else {sell();}

The variables (var0 to var9) could represent a selection of elements of infor-
mation drawn from fundamental analysis of an industry sector; for example,
var5 could be a price/earnings ratio for a company, and var3 could repre-
sent a company’s sales growth over the past 3 years. Hence, the above rule
buys companies which have a P/E ratio of more than 13, and where the level
of sales growth over the past three years exceeds 64%. Of course, successful
real-world filter rules for trading would not be as simple as this, and would
typically contain multiple conditions.

4.2 Mutation and Crossover in GE

As the search process in the canonical GE is driven by a variable-length GA
(Fig. 4.2), the standard genetic operators such as crossover, mutation and
duplication can be applied to the underlying genotypic representation irre-
spective of the form of the phenotype. That is, an unconstrained evolutionary
search can be conducted at the genotypic level, unlike in GP where the search
operators have to be designed to ensure that syntactically correct programs
are created. GE’s genotype-phenotype mapping process automatically ensures
that syntactically legal programs are generated. As a result of this genotype-
phenotype mapping, it is interesting to examine the effects the operators of
mutation and crossover have on the phenotypic program.

Search
Algorithm

Binary String

Integer String

Grammar

Program

Output
(quality of performance of program)

Fig. 4.2. Grammatical evolution embeds a populational search process in which the
quality of the phenotype drives the search process. The diversity-generation process
acts on the underlying genotype

4.2 Mutation and Crossover in GE 83

sites

e eo

+

e

e eo

+

e

<e> ::= <o> <e> <e>
| <v>

<o> ::= +

<v> ::= x
| y

| −

v v

y x

0 0 1 1 1 0b

c 0 0

a

crossover
site

? ?

ripple

Fig. 4.3. An illustration of ripple crossover in grammatical evolution using the
chromosome (represented as rule choices) (b) and its corresponding derivation tree,
which is produced as a result of the grammar (a). The site of one-point crossover is
indicated (b) on the chromosome and the derivation tree. The resulting derivation
tree ripple sites are indicated with ‘?’ (c)

In the case of mutation events at the codon level, the integer value of a
codon will be modified. However, depending on the context (the non-terminal)
to which the codon is applied the change in its value may or may not result
in a change in the choice of production rule applied. For example, given the
non-terminal <value> with two possible rules (see below), a binary codon
value of 00001010 (decimal value 10) that results in <value> being replaced
with <int-const> after bit mutation to 00001011 (decimal value 11) results
in the use of <real-const>:

84 4 Grammatical Evolution

<value> ::= <int-const>

| <real-const>

On the other hand, a mutation event that results in 00001011 becoming
01001011 (decimal value 75) leaves <value> being replaced with <real-const>.
This type of mutation event is referred to as neutral mutation as it has no
effect on the phenotype’s functionality (fitness). In a similar fashion to the
degenerate biological genetic code in which different codons can represent the
same amino acid, different codons in GE can represent the same choice of
production rule when used in the same non-terminal context.

A standard one-point crossover event on a GE chromosome results in the
right-hand sides of the parental chromosomes undergoing a simple swap in
a standard GA fashion. However, the impact on the phenotype may not be
so simple. One-point crossover in GE has been called ripple crossover due
to the effect that can arise on the resulting derivation sequence. Figure 4.3
illustrates this process. During the genotype-phenotype mapping in GE the
resulting derivation sequence can be represented as a derivation tree. The im-
pact of a crossover event on the genotype can be seen in the example derivation
tree (Fig. 4.3). A number of ripple sites at different locations on the deriva-
tion tree are created once the genetic material on the right-hand side of the
crossover site is removed, the result being that the codons swapped over from
the second parent are used to complete the derivation sequence at these in-
complete points. When compared to sub-tree crossover in GP (see Chap. 3)
ripple crossover has a completely different behaviour. Instead of modifying a
single sub-tree as in GP, multiple sub-trees can be changed as a consequence
of applying ripple crossover in GE.

4.3 Recent Developments in GE

Grammatical evolution has received considerable attention since its introduc-
tion and there is a wide literature on the topic including [174, 176, 177, 178].1

Some of the more recent developments are focused on the various components
(Fig. 4.4) of the GE approach including the search engine, the grammar, and
the mapping process itself. Some of the significant advances are detailed be-
low.

4.3.1 Search Engine

Alternative search engines to the variable-length GA have been adopted. For
example, particle swarm and differential evolution algorithms have been used
to create grammatical swarm [168] and grammatical differential evolution al-
gorithms, respectively. The grammatical swarm (GS) algorithm has shown
particular promise and demonstrates a social learning approach to program

1See also http://www.grammatical-evolution.org

4.3 Recent Developments in GE 85

Grammar

Objective
function

Search engine

Output GE

Fig. 4.4. Modular structure of grammatical evolution

generation dubbed social programming. A short description of the GS algo-
rithm is provided in Chap. 5.5.

4.3.2 Meta-grammars

The adoption of a meta-grammar, a grammar that describes the construction
of another grammar, has been investigated [175]. This grammatical evolution
by grammatical evolution (GE2) approach allows the grammar itself to be
evolved and has been shown to be particularly effective in dynamic environ-
ments.

Exploiting this meta-grammar approach, a modular grammar-based GA,
mGGA (the meta-grammar genetic algorithm), has been described [167]. The
mGGA can automatically compose building blocks of symbols that can be
reused in a modular fashion to construct a solution in a more efficient manner.
By exploiting modularity within a solution, the length and therefore complex-
ity of the genotype encoding the solution can be reduced, thus improving the
scalability of the algorithm to tackle harder instances of problems. An exam-
ple meta-grammar to generate 8-bit solutions with the mGGA is presented
below:

<g> ::=

"<bitstring> ::=" <reps>
"<bbk4> ::=" <bbk4>
"<bbk2> ::=" <bbk2>

"<bbk1> ::=" <bbk1>
"<bit> ::=" <val>

<bbk4> ::= <bbk4t>
| <bbk4t> "|" <bbk4>

86 4 Grammatical Evolution

<bbk2> ::= <bbk2t>

| <bbk2t> "|" <bbk2>
<bbk1> ::= <bbk1t>

| <bbk1t> "|" <bbk1>
<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>

<bbk1t> ::= <bit>
<reps> ::= <rept>

| <rept> "|" <reps>
<rept> ::= "<bbk4><bbk4>"

| "<bbk2><bbk2><bbk2><bbk2>"

| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"
<bit> ::= "<bit>"

| 1
| 0

<val> ::= <valt>
| <valt> "|" <val>

<valt> ::= 1

| 0

Building blocks of size 1, 2, 4 and 8 bits are specified to be components
of the solution grammar output as the result of mapping the above meta-
grammar. For each building block size there can be many different building
block instances represented as choices for that building block size in the solu-
tion grammar. An example bitstring solution grammar that could be produced
by the above meta-grammar is provided below:

<bitstring> ::= <bit>11<bit>00<bit><bit>

| <bbk2><bbk2><bbk2><bbk2>
| 11011101
| <bbk4><bbk4>

| <bbk4><bbk4>

<bbk4> ::= <bit>11<bit>
| 000<bit>

<bbk2> ::= 11
| 00

| <bit>1

<bbk1> ::= 0
| 0

<bit> ::= 1 | 0 | 0 | 1

We can see in the above solution grammar that there are five possible
building blocks of size eight (<bitstring>), two possible building block types
of size four (<bbk4>) and three possible building blocks of size two (<bbk2>).
Modularity exists above in the ability to specify the size and content (or
partial content) of a building block through its incorporation into the solution
grammar. This building block can then be repeatedly reused in the generation
of the phenotype. An additional mechanism for reuse is through the wrapping
operator of grammatical evolution. During the mapping process if we reach
the end of the genotype and the construction of our phenotype is incomplete,
we can invoke the wrapping operator to move our reading head back to the
first codon in the genome. This allows the reuse of rule choices if the codons
are used in the same context.

4.3 Recent Developments in GE 87

4.3.3 πGE

The GE mapping process can be divided into a number of sub-components
including the transcription and translation processes as outlined in Fig. 4.1.
The πGE variant of GE replaces the translation process to allow evolution
to specify the order in which production rules are mapped as opposed to the
strict depth-first left-to-right mapping of the standard GE algorithm [170].
Given the trading rule example grammar, if during the mapping process we
have the following developing trading rule then in the standard GE mapping
process the first non-terminal <value> will be expanded next.

if(<value> <relop> <value>) {

<trade>;

}

else{

<trade>;

}

However, in πGE we use the genotype to dictate firstly which non-terminal
from the five present to expand next, before deciding which production rule to
apply to this non-terminal. The genome of an individual in πGE is different in
that there are two components to each codon. That is, each codon corresponds
to the pair of values (nont, rule). To decide which non-terminal (NT) to
expand the nont value of the next codon is read and used in the following
mapping function

NT = cnont % n

where cnont is the nont value of the current codon and n is the number of
non-terminals present. To decide which production rule (R) is to be applied
to the selected non-terminal the standard GE mapping function uses the rule
component of the current codon as follows

R = crule % r

where crule is the rule value of the current codon and r is the number of
production rule choices for this non-terminal.

πGE has shown significant performance gains over the standard GE algo-
rithm on a number of benchmark problem instances.

4.3.4 Applications and Alternative Grammars

The flexibility provided by the plugability of the grammar makes the gram-
matical evolution approach amenable to application across a broad range of
problem domains. It also provides an easy way to encode domain knowledge.
When the user is unsure of the exact form a solution might take, the use of a

88 4 Grammatical Evolution

meta-grammar can remove this system parameter from the user, allowing the
search process to learn what form the grammar should adopt.

In addition to meta-grammars various alternative grammars have been
explored including the use of attribute grammars to introduce semantic and
context-sensitive information [41, 172]. The ability to encode context-sensitive
and semantic information into a grammar opens up a whole range of problems
that cannot be tackled efficiently with a context-free language.

Grammars have also been used as an alternative approach to specify the
creation of constants for genetic programming using digit concatenation and a
more persistent alternative to ephemeral random constants [58]. More recently
meta-grammars have also been adopted for constant creation [60].

4.4 Summary

This chapter presented an introduction to grammatical evolution, one of the
methodologies inspired by an evolutionary metaphor. In Part III of this book
we present a number of case studies that illustrate the use of grammatical
evolution to generate rules for index trading, intra-day trading, and foreign
exchange trading; for the prediction of corporate failure; and finally for the
classification of bond ratings. We now continue our exposition of biologically
inspired methodologies with examples of social learning algorithms based on
swarm intelligence.

5

The Particle Swarm Model

One model of social learning which has attracted interest in computer science
in recent years is drawn from a swarm metaphor. Two popular variants of
swarm models exist, those inspired by the flocking behaviour of birds or the so-
ciological behaviour of a group of people, and those inspired by the behaviour
of social insects such as ant colonies (introduced in Chap. 6). The essence of
these systems is that they exhibit flexibility, robustness and self-organisation
[23]. Although the systems can exhibit remarkable coordination of activities
between individuals, this coordination does not stem from a centre of control
or a directed intelligence, rather it is self-organising and emergent. This chap-
ter introduces the particle swarm optimisation (PSO) algorithm which has
been inspired by social learning processes.

5.1 PSO Algorithm

The PSO algorithm was introduced by Kennedy and Eberhart [124] and is de-
scribed in detail in [126]. In PSO, a swarm of particles, which encode solutions
to the problem of interest, move (fly) in an n-dimensional search space in an
attempt to uncover better solutions. Each of the particles has two associated
properties, a current position and a velocity. Each particle has a memory of
the best location in the search space that it has found so far (pbest), and knows
the best location found to date by all the particles in the population (gbest).
At each step of the algorithm, particles are displaced from their current posi-
tion by applying a velocity (or gradient) vector to them. The magnitude and
direction of their velocity at each step is influenced by their velocity in the
previous iteration of the algorithm, simulating momentum, and the location
of a particle relative to the location of its pbest and the gbest. Therefore, at
each step, the size and direction of each particle’s move is a function of its
own history (experience), and the social influence of its peer group. Figure
5.1 provides a flowchart of the PSO algorithm. Several variants of the PSO

90 5 The Particle Swarm Model

algorithm exist. The algorithm for the canonical continuous version of PSO is
as follows:

Initialise
swarm with
n random
particles

Calculate
velocity for

‘p’

Update pbests
and gbest (if
necessary)

Move ‘p’
to updated
position

Until
terminating
condition

Set initial
locations for

pbest and
gbest

For each
particle ‘p’

Determine the
fitness of the
new location

Fig. 5.1. A flowchart of the PSO algorithm

i. Initialise each particle in the population by randomly selecting values for
its location and velocity vectors.

ii. Calculate the fitness value for each particle.

5.1 PSO Algorithm 91

iii. Set pbest for each particle to its current location, and determine the lo-
cation of gbest.

iv. For each particle, calculate its velocity using (5.1).
v. Update the position of each particle using (5.3).
vi. Calculate the fitness value of each particle. If the current fitness value for

a particle is greater than its best previous fitness, then revise the location
of pbest.

vii. After all the particles have been updated, determine the location of the
particle with the highest fitness and revise gbest if necessary.

viii. Repeat steps iv-vii until stopping criteria are met.

Each particle i has an associated current position in search space xi, a cur-
rent velocity vi, and a personal best position in search space yi. During each
iteration of the algorithm, the location and velocity of each particle are up-
dated using (5.1-5.3). Assuming that a function f is to be maximised, that
the swarm consists of n particles, and that r1, r2 are drawn from a uniform
distribution in the range (0,1), the velocity update is as follows:

vi(t + 1) = Wvi(t) + c1r1(yi − xi(t)) + c2r2(ŷ − xi(t)) (5.1)

where ŷ is the location of the global-best solution found by all the particles.
A variant on the canonical particle swarm algorithm is to use a local best
point (lbest) rather than a global best point (gbest). In the local version of
the algorithm, each particle is considered to be linked to a subset of the
population of particles, and this linkage structure is fixed at the beginning
of the optimisation process. The term lbest replaces gbest in (5.1), and lbest
represents the best location found by any particle in that local group.

At the start of the algorithm, the pbest for each particle is set at its initial
location, and gbest is set to the location of the best of the pbests. In each
iteration of the algorithm, a particle is stochastically accelerated towards its
previous best position and towards a neighbourhood (global) best position,
thereby forcing particles to continually search in the most-promising regions
found so far in the solution space. The weight coefficients c1 and c2 control the
relative impact of the pbest and gbest locations on the velocity of a particle.
Low values for c1 and c2 allow each particle to explore far away from already
uncovered good points, high values of the parameters encourage more intensive
search of regions close to these points. The random coefficients r1 and r2 ensure
that the algorithm is stochastic. A practical effect of r1 and r2, is that neither
the individual nor the social learning terms are always dominant.

Each component of the velocity vector vi is restricted to a range
[−vmax, vmax]. The values chosen for [−vmax, vmax] can have an important
effect on the efficiency of the algorithm. Small values can result in insuffi-
cient exploration of the search space, while large values can result in particles
moving past good solutions. The value of vmax is typically set in the range
k ∗ xmax, where 0 < k < 1. Although this velocity restriction does not nec-
essarily bound the particles into the range of maximum allowable values for

92 5 The Particle Swarm Model

each xi during each iteration of the algorithm, the oscillation of the particles
inside and outside the allowable range plays an important part in the search
process of the swarm. Experience suggest that the particles should not be
constrained to remain within xmax as the algorithm runs.

W represents a momentum coefficient which controls the impact of a par-
ticle’s prior-period velocity on its current velocity. Higher values of the mo-
mentum term encourage the search of diverse regions. Typically, the value of
W is decreased gradually during the search process, in an effort to encourage
more-intensive local search of already discovered good regions, and to help
the swarm converge. A simple method to achieve this is:

W = wmax − wmax − wmin

maxiter

∗ curriter (5.2)

where wmax and wmin are the initial and final weight values, respectively (for
example, 1.0 and 0.2), maxiter is the maximum number of iterations of the
PSO algorithm, and curriter is the current iteration number.

Once the velocity update for particle i is determined, its position is up-
dated (5.3) and pbest (yi(t + 1)) is updated if necessary using (5.4-5.5).

xi(t + 1) = xi(t) + vi(t + 1) (5.3)

yi(t + 1) = yi(t) if f(xi(t + 1)) ≤ f(yi(t)), (5.4)

yi(t + 1) = xi(t + 1) if f(xi(t + 1)) > f(yi(t)) (5.5)

After all particles have been updated a check is made to determine whether
gbest needs to be updated:

ŷ ∈ (y0, y1, ..., yn)|f(ŷ) = max (f(y0), f(y1), ..., f(yn)) (5.6)

Figure 5.2 provides visual intuition on the workings of the algorithm. A par-
ticle is located at position xi(t) at time t, and has a velocity of vi(t). The
position of the particle at time t + 1 is determined by xi(t) + vi(t + 1), and
vi(t + 1) is obtained by a stochastic blending of vi(t), an acceleration towards
gbest (vgbest) and an acceleration towards pbest (vpbest).

5.1.1 Constriction Coefficient Version of PSO

An alternative method for controlling the magnitude of the velocity update
step was proposed in [42], the constriction coefficient. In this method, the
velocity update step is altered to the following:

vi(t + 1) = χ(vi(t) + c1r1(yi − xi(t)) + c2r2(ŷ − xi(t))) (5.7)

where χ is the constriction coefficient (the momentum coefficient is dropped).
The value of the constriction coefficient is calculated as χ = 2

|2−c−
√

(c2−4c)|
,

5.1 PSO Algorithm 93

v(t)

v(t+1)

x(t+1) Actual
global

optimum

X

Y

x(t)

vpbest

vgbest

Fig. 5.2. Diagram of the particle position update process

where c = c1 + c2, and c > 4, the choice of these values being motivated to
help ensure that the swarm converges to a small region of the search space.
A common value for χ = 0.7298, resulting from values of c1 = c2 = 2.05.

5.1.2 Parameter Settings for PSO

Relatively few parameters need to be tuned by the modeller in the canonical
PSO algorithm. Common values for the key parameters include:

• Number of particles: typically 20-50.
• Range of values for particles: problem dependent.
• vmax: This determines the maximum change a particle can make in any

direction during one iteration of the process. Typically it is set to the range
of the allowable values for that parameter. For example, if the second
element (parameter) of the solution is constrained to lie in [-5, 5] then
vmax for that item is 10.

• Learning factors: c1 and c2. Generally, each is small in size and selected
in the range [0,4], with c1 = c2. Popular values for each factor, for the
non-constriction version of the algorithm, are in the range 1.5 to 2 [113].

94 5 The Particle Swarm Model

5.2 Discrete PSO

In some applications of PSO, the required solutions have a binary rather than
a continuous representation. The best-known version of binary PSO, BinPSO
[125], converts the continuous PSO algorithm to one which operates on binary
representations. In BinPSO, the location (xi) of each particle i is represented
as a binary vector of 0s and 1s. The adapted velocity-update equation is
virtually unchanged in appearance from (5.1):

vj
i (t + 1) = (Wvj

i (t) + c1r1(y
j
i − xj

i (t)) + c2r2(ŷ
j − xj

i (t))) (5.8)

where xj
i is the value (0 or 1) in position j of particle i’s location vector. All

of the other terms in the update equation are as already defined in (5.1). To
ensure that each element of the vector vi(t + 1) is binary, a sigmoid transfor-
mation is performed on each element j of vi(t + 1):

Sig(vj
i (t + 1)) =

1

1 + exp(−vj
i (t + 1))

(5.9)

Finally, these values are used to determine the values of each element of xi(t+
1), by comparing each element of Sig(vi(t)) with a random number drawn
from U(0, 1):

If U(0, 1) < Sig(vj
i (t + 1)), then xj

i (t + 1) = 1; else xj
i (t + 1) = 0 (5.10)

Although the above velocity-update equation looks similar to that for the
canonical continuous PSO, it has a quite a different interpretation in BinPSO.
The vector vi is interpreted as particle i’s predisposition to set the value in
each of the n binary elements of its position vector equal to 1. The higher
the value of vj

i for an individual element of i’s position vector, the more likely

that xj
i = 1, with lower values of vj

i favouring the choice of xj
i = 0. Sig(vj

i)

represents the probability of bit xj
i taking the value 1 [125]. Therefore, if

Sig(vj
i) = 0.3 there is a 30% chance that xj

i = 1, and a 70% chance it is zero.

5.3 Comparing PSO and the GA

The PSO algorithm bears similarity to other biologically inspired optimising
algorithms. Like the GA, it is population-based, it is typically initialised with
a population (swarm) of random encodings of solutions, and search proceeds
by updating these encodings over a series of generations (iterations). Unlike
the GA, PSO has no explicit selection process as all particles persist over time.
Instead a memory in the form of gbest/lbest is substituted for selection.

It is possible to adapt the canonical PSO algorithm to incorporate an ex-
plicit selection mechanism. A simple replacement strategy would be to drop

5.5 Grammatical Swarm 95

the poorest x% of particles after each iteration of the algorithm, replacing
them with newly created random particles. A more sophisticated method is
to periodically drop low-fitness particles, replacing their location and veloc-
ity vectors with those of higher-fitness particles in the current population,
while leaving the pbest information for the replaced particle unchanged [10].
This has the affect of intensifying the search in a current good region, while
maintaining a memory of historic high-fitness locations.

The communication or information-sharing mechanism of PSO differs from
that of the GA. In the GA, the communication is between two solutions (the
parents). In PSO the communication is between the current solution, its pbest
and the gbest/lbest. Therefore, the communication process embeds both mem-
ory and peer-learning.

5.4 MLP-Swarm Hybrids

As already seen, search algorithms such as the GA can be used to uncover
good weight vectors, choices of inputs, and network structures for MLP and
other NN models. In a similar fashion, the particle swarm algorithm can be
used to search for good choices for these items.

Suppose the intention was to uncover a good set of weights for an MLP of a
fixed 6-3-1 (input-hidden-output node) structure. This MLP has 21 (6*3+3*1)
connections, and the weights for each of these can be represented as a 21-
dimension real-valued vector. In using PSO to uncover good weight vectors, a
series of initial weight vectors (particles) could be generated randomly. Each
weight vector can be decoded into an MLP structure, and the error for the re-
sulting MLP determined by passing the training dataset through the network.
The resulting model-fit error is a measure of the particle’s fitness (low errors
representing a higher fitness). Evidence suggests that the results obtained
using this method are competitive with those obtained using the backpropa-
gation algorithm [100]. The use of particle swarm to construct MLP models
can be extended to include the search for good inputs, for good network struc-
tures, and for good slope values for the transfer functions [68].

5.5 Grammatical Swarm

In addition to the hybridisation of particle swarm algorithms with MLPs, they
have also been combined with a grammatical evolution genotype-phenotype
mapping [168, 169]. The resulting grammatical swarm (GS) algorithm uses
PSO to search for computer programs, or more generally sentences in a user-
specified language.

In GS each particle or real-valued vector represents choices of program
construction rules specified as production rules of a Backus-Naur form gram-
mar. The particle update equations are as described earlier for the continuous

96 5 The Particle Swarm Model

particle swarm algorithm with additional constraints placed on the velocity
and dimension values. Velocities are bound to the range ±Vmax = 255, and
each dimension is bound to the range 0 to 255. The real-valued dimension
values are rounded up or down to the nearest integer, and the standard GE
mapping function (R = c Mod r, where R is the selected production rule, c
is the codon integer value, and r is the number of production rules to choose
from) is used.

Unlike its GE or GP counterparts, which predominantly use crossover-
driven search coupled with selection, GS does not use explicit crossover or
selection to generate programs. Instead the search process is driven by the
movement of particles which are influenced by personal and social knowledge
in the form of the positions of the gbest (or lbest) particle and the particle’s
own pbest position. The performance of GS has been compared to GE across a
number of benchmark problems with encouraging results, suggesting that pro-
gram generation using a social programming approach such as GS is a possible
alternative to more traditional (GA-driven) genetic programming algorithms.

5.6 Example of a Financial Application of PSO

In Chap. 3 it was seen how a GA could be used to evolve rules for a trading
system where the general format of these rules is specified by the modeller.
An example of a possible rule is:

IF [INDICATOR1(time) (<, >,=) VALUE1]

(AND, OR, NOT) [INDICATOR2(time) (<, >,=) VALUE2]

THEN (BUY, SELL, DO NOTHING)

The creation of a good trading rule represents a search problem. Of all the
possible choices of indicators, lag periods, mathematical functions, and rule
combinations, which produce good results while passing a plausibility test?
It is possible to use PSO for the same combinatorial task of combining good
rule fragments, where the rule is encoded as a real-valued vector. Initially a
population of particles (random vectors) is created, each corresponding to a
trading rule. The fitness of each particle or rule can be tested using histori-
cal financial data, and the particle swarm algorithm is iteratively applied to
uncover better trading rules.

Alternatively, a social programming particle swarm algorithm in the form
of grammatical swarm could be used in a manner similar to grammatical
evolution to generate rules for a trading system (see Chap. 4 and Part III).

5.7 Recent Developments in PSO

There is a growing literature on particle swarm algorithms that extends the
underlying algorithm presented in this chapter. As a starting point the inter-

5.8 Summary 97

ested reader should refer to work on speciation of particles with a predator-
prey metaphor [198] and other modifications to the behaviour of the basic
algorithm, e.g., [21, 22, 154]; modelling the adaptation of organisations on a
strategic landscape with OrgSwarm [33, 34]; and, as outlined earlier in this
chapter, the generation of programs using grammatical swarm [168].

5.8 Summary

The key learning mechanisms in the PSO algorithm are driven by a metaphor
of social behaviour: that good solutions uncovered by one member of a popu-
lation are observed and copied by other members of the population. Of course,
these learning mechanisms abound in business and other social settings. Good
business strategies, good product designs, and good theories stimulate imita-
tion and subsequent adaptation. Particle swarm algorithms have proven to be
successful optimisation tools in a variety of applications, and they have clear
potential for application to financial modelling.

6

Ant Colony Models

Ant colony models (ACM) constitute a family of population-based, optimisa-
tion and clustering algorithms that are metaphorically based on the activities
of social insects. They are inspired by the observation that social insects such
as ants, bees and termites live in highly organised colonies. Despite the high
degree of organisation of these colonies, there is no overt top-down commu-
nication structure. Each individual insect follows a fairly limited set of rules,
usually with only local awareness of its environment, but the interaction of the
activities of these individuals gives rise to a complex emergent, self-organised
structure, and provides the colony with the ability to adapt to alterations in
its environment. ACM emphasises the importance of local communication (or
distributed learning) between the individuals in a population in permitting
the population to adapt successfully over time.

The information-exchange mechanism between ants can be direct (by vi-
sual or chemical contact) or indirect (where an ant modifies the environment
faced by its peers). In the latter case, the actions of individual ants have the
effect of changing the way the environment, or a problem, is perceived by
other ants. This form of communication is known as stigmergy.

In general, ant algorithms are derived from four metaphors of ant be-
haviour (Fig. 6.1). In this Chapter we limit attention to ant-foraging models
which can be used for discrete optimisation problems. A more detailed dis-
cussion of ACM can be found in [23, 64, 66].

6.1 Ant-Foraging Models

One way that ants can alter the environment faced by their peers is by mark-
ing trails to discovered food sources. During ant food-foraging, individual ants
lay down a chemical trail of pheromone. If a group of ants search randomly
around their nest for food, pheromone trails from the nest to close-by food
sources will tend to grow in strength more quickly than those to far-away food
sources, as ants travelling to the closest food source will return quickly to the

100 6 Ant Colony Models

Ant Systems

Ant-foraging
behaviour

Brood-sorting
behaviour

Cemetery-
formation
behaviour

Co-operative
transport

Fig. 6.1. Taxonomy of ant colony algorithms

nest, leaving an outward and inward trail of pheromone. The quality of the
food source may also affect the amount of pheromone deposited. Typically,
the better the food source, the more pheromone deposited. If subsequent for-
aging ants have a tendency to follow stronger rather than weaker pheromone
trails, auto-catalytic behaviour will emerge, with ever-increasing numbers of
ants travelling along the strong trail and reinforcing it further [65] (Fig. 6.2).
This gives rise to a positive feedback loop between the ants in the search for
food. The effect of the pheromone-following behaviour is to create an indirect
communication between ants. As trails emerge over time a collective memory
is created as to the location of the food source.

One drawback of the positive feedback mechanism is that it can lead to
lock-in, whereby the heavily pheromone-reinforced path continues to be used,
even if a rich food source subsequently becomes available closer to the nest.
The concepts of positive feedback and lock-in are not unique to ant societies.
For example, telecommunication and transport networks in human societies
display similar characteristics, whereby once a given technology becomes dom-
inant it becomes difficult to displace.

6.1.1 Ant-Foraging Algorithm

Ant-foraging behaviour can be used to design an algorithm for discrete opti-
misation. The basic flowchart of an ant-foraging algorithm is outlined in Fig.
6.3. In the algorithm, a colony of artificial ants iteratively and stochastically
constructs solutions (a construction graph) for the problem of interest, using
artificial pheromone trails, which are modified as the algorithm runs. Dur-
ing the solution construction stage, each ant builds a complete solution to
the problem by combining discrete solution fragments. The nature of these
fragments depends on the problem. For example, in a travelling salesman
problem (TSP) the fragments will correspond to the choice of the next city
to be visited on the tour being constructed. The choice of solution fragments
by individual ants at each step of the construction routine is guided by the

6.1 Ant-Foraging Models 101

 Food source

 Nest

Obstacle

Fig. 6.2. Foraging ants reinforcing a trail to a food source

quantity of pheromone deposited on each of the possible choices they face,
with higher pheromone choices being more likely to be selected by an ant.
After all the ants have constructed a solution to the problem, the pheromone
deposits on each solution fragment are updated, with solution fragments on
higher-quality solutions receiving stronger reinforcement. Over multiple iter-
ations of the algorithm, better solution fragments become more heavily used
by the population of ants, and less-successful fragments fall into disuse. Typ-
ically, the pheromone trails are subject to an evaporation process during the
update step, to ensure that less-travelled solution fragments are forgotten over
time by the population of ants.

Table 6.1. Correspondence between ant systems and optimisation

Ant System Component Correspondence

Complete ant trail Solution: rule, equation or program.

Fragment of ant trail Fragment of solution.

Pheromone laid down on ant trail. Memory of the quality of past solutions.

Updating of pheromone trails and Creating diversity in search process.
probabilistic choice of rule fragments
from alternatives available.

102 6 Ant Colony Models

Set parameters,
and initialise

pheromone trails to
positive value

While termination
condition not met

Each ant constructs
a solution

Update
pheromone trails

Calculate the
quality of each
ant’s solution

Fig. 6.3. A flowchart of the ant-foraging algorithm

Applying the Algorithm

Ant colony optimisation (ACO) uses metaphorical inspiration from ant be-
haviours to create algorithms for optimisation purposes. In applying the ant-
foraging algorithm to solve a combinatorial optimisation problem, two key
questions must be addressed by the modeller.

i. How do the ants construct proto-solutions to the problem of interest?
ii. How are the pheromone trails updated?

6.1 Ant-Foraging Models 103

At the start of the algorithm, all the potential solution fragments have their
pheromone initialised to a non-zero value. Each ant in turn commences a
traversal of the potential solution fragments, in order to build a complete so-
lution. There are many possible ways to implement the construction process.
At each decision juncture when a solution is being constructed an ant could
simply select from the set of available solution fragments the fragment which
has the highest pheromone level (this corresponds to a greedy search process).
However, this would tend to result in rapid convergence to a small set of so-
lutions. Another possibility is to stochastically choose amongst the discrete
solution fragments available at each step of the construction process. For ex-
ample, the probability of choosing fragment i from amongst the K possible
choices at a particular construction step could be determined using (τk is the
quantity of pheromone associated with fragment k):

Probi =
τi∑K

k=1 τk

(6.1)

This approach ensures that while solution fragments which have been part of
good solutions in the past are more likely to be selected as their pheromone
levels are high, an ant still has the potential to explore a new path. A more
complex approach is to combine the pheromone information with an estimate
of the likely quality of each of the solution fragments when making the choice
of which fragment to add to the growing solution. This is known as adding
visibility to the construction process (see [23] for more information on this
idea).

After all the ants have traversed the solution fragments and have con-
structed solutions to the problem, the quality of each of these solutions is
assessed, and this information is used to update the pheromone trails. The
update process typically consists of an evaporation step, and a pheromone
deposit step:

τi(t + 1) = τi(t)(1 − p) + δi (6.2)

In the evaporation step the pheromone associated with every solution frag-
ment is degraded, where the evaporation rate is given by p. The evaporation
rate crucially controls the balance between exploration and exploitation in
the algorithm. If p is close to 1, then the pheromone values used in the next
iteration of the algorithm are highly dependent on the good solutions from
the current iteration, leading to local search around those solutions. Smaller
values of p allow solutions from earlier iterations of the algorithm to influence
the search process.

The amount of pheromone deposited on each solution fragment i (δi) dur-
ing the pheromone update process depends on how the deposit step is opera-
tionalised in the algorithm. The deposit step can be performed in many ways,
depending on which solutions are chosen to participate in the deposit process,
what weight is applied to each of these solutions in the deposit process, and

104 6 Ant Colony Models

how pheromone is deposited on each fragment of a solution participating in
the deposit process.

In choosing which solutions participate, one method would be to select
only the best solution in the current population. Another method would be
to allow all solutions in the current population to play a role in the deposit
process. Elitist strategies which allow the best solution found so far over all
iterations of the algorithm to participate in the deposit process can also be
implemented.

The updating of the pheromone deposits on individual fragments of solu-
tions can also be performed in a variety of ways. One method is to reinforce
the components in the solution found by each ant (if all ants participate in the
update process) by adding Q∗F to the pheromone associated with each solu-
tion fragment, where Q is a modeller-chosen fixed amount of pheromone, and
F is a measure of the quality of the solution scaled into the range (0 → 1).
Therefore, solution fragments contained in good-quality solutions are more
heavily reinforced by pheromone.

To avoid premature convergence of the search process to a single solution,
and to ensure that solution fragments have a non-zero chance of being selected
at each step of the construction process, the pheromone associated with each
solution fragment (τi) may be constrained so that after the pheromone update
process 0 < τmin ≤ τi ≤ τmax. These bounds prevent the relative differences
between the pheromone trails associated with each fragment from becoming
too extreme. The algorithm is terminated either after a fixed number of iter-
ations, or when there has been no improvement in the best solution for a set
number of iterations.

6.2 A Financial Application of ACO

In applying ACO to real-world problems, the trails formed by individual ants
are potential solutions (for example trading rules) for the problem of interest.
Individual elements of these trails represent choices for fragments of each solu-
tion hypothesis. Hence, the individual ants traverse choices for rule fragments,
and the entire trail traversed by an ant represents a complete solution. The
better the solution in terms of solving the problem, the greater the strength
of the pheromone trail attributed to it, and the greater the chance that sub-
sequent ants will select to travel along it. Let’s take the case of constructing
a simple IF-THEN trading rule:

IF [INDICATOR1(time) (<, >,=) VALUE1]

THEN (BUY, SELL, DO NOTHING)

If we restrict attention to the case where there is a finite number of choices for
each of the components of the rule, the selection of a good rule represents a
combinatorial optimisation problem, in that there are multiple possible choices

6.4 Hybrid Ant Models 105

for the ‘IF condition’, the choice of indicator, the choice of time lag and so
on.

In applying an ant-foraging algorithm to develop good trading rules, each
ant in the population initially starts with an empty rule, and adds one
term/parameter at a time to the rule from a set of possible choices for each
term/parameter, until a full trading rule is developed. The choice of term to
be added at each stage is biased based on the quantity of pheromone associ-
ated with each of the possible choices. On the first iteration of the algorithm,
each choice is randomly initialised with a small positive value of pheromone.

The quality of the trading rule developed by each ant can be evaluated by
testing it against a historical financial dataset. Once all ants have constructed
rules (of differing quality), the pheromone associated with each choice of trad-
ing rule and its components is updated. Better rules attract more pheromone.
To reduce the chance that the process will converge to a single solution too
quickly, the quantity of pheromone associated with all trails is subject to
an evaporation or forgetting process after each iteration of the algorithm.
Pheromone trails corresponding to better trading rules tend to get strength-
ened (reinforced) over time as more ants traverse them. This leads to more-
intensive searching of variants of the best-so-far trading rules. The process is
iterated until stopped by the modeller, with the strongest trails correspond-
ing to the best trading rules. Of course, ACO is a general-purpose optimising
algorithm, and its utility is not limited to the construction of trading rules.

6.3 Ant-Inspired Classification Algorithms

Another behaviour of ant colonies which has been used as a metaphor to
create classification and clustering algorithms is the picking up and depositing
of items into clusters of like items. Examples of this behaviour include brood-
sorting, where ant larvae are sorted and grouped into piles of differing size,
and cemetery building, where dead ants are removed from the colony and
deposited together.

Typically in these algorithms, vectors of information are sorted into similar
groups. An illustration of how this approach can be used to create a model
for predicting corporate failure is provided in a case study in Chap. 18.

6.4 Hybrid Ant Models

Like other biologically inspired computational methodologies, ant models need
not be applied on a stand-alone basis, and can be employed in a hybrid fashion.
One example of this is the creation of a MLP-ACO hybrid, where an ant
algorithm is used to train the weights in an MLP structure [207]. An ACO
algorithm could also be used as a search engine in a GE system.

106 6 Ant Colony Models

6.5 Summary

Ant colony systems comprise of a family of algorithms which draw their
metaphorical inspiration from the activities and learning mechanisms of so-
cial insect societies. A key feature of these societies is their ability to promote
problem-solving behaviour between individuals in the absence of a top-down
control system. The algorithms can be used for both classification and opti-
misation purposes.

7

Artificial Immune Systems

In previous chapters, we saw that a variety of biologically inspired algorithms
can be used for classification and optimisation purposes. In this chapter, a
number of artificial immune system (AIS) algorithms, whose design is inspired
by the workings of the immune system, are outlined. The object in designing
and applying AIS is not to produce exact models of the natural immune
system, rather the aim is to extract ideas and metaphors from the workings
of the natural immune system which can be used to help solve real-world
problems. The most commonly applied AIS algorithms can be grouped into
three categories (Fig. 7.1), based on distinct features of the natural immune
system.

Artificial Immune
Systems

Negative /
Positive Selection

Clonal Expansion
and Selection

Network
Algorithms

Fig. 7.1. Taxonomy of AIS algorithms

In this chapter we will primarily concentrate on the negative selection al-
gorithm which can be used for classification, and the clonal expansion and
selection algorithm which can be used for optimisation. Before we examine

108 7 Artificial Immune Systems

these algorithms, a short overview of the workings of the natural immune
system is provided. Readers requiring a detailed introduction to the immune
system are referred to [93] and [116].

7.1 Overview of Natural Immune Systems

The immune system is comprised of an intricate network of specialised tis-
sues, organs, cells and chemical molecules. The capabilities of the natural
immune system include the ability to recognise, destroy and remember an al-
most unlimited numbers of pathogens (foreign or non-self objects that enter
the body, including viruses, bacteria, multi-cellular parasites, and fungi), and
also to protect the organism from misbehaving cells in the body. To assist in
protecting the organism, the immune system has the capability to distinguish
between self and non-self. Critically, the system does not require exhaustive
training with negative (non-self) examples to make these distinctions, but can
identify a pathogen as being non-self even though it has never been encoun-
tered before.

7.1.1 Innate vs Adaptive Immunity

The human natural immune system has multiple-level defenses (Fig. 7.2). The
first lines of defence are barriers which physically block ingestion of pathogens
such as skin and nasal hair. These barriers are supported by physiological
defenses, fluids secreted by the body (saliva, sweat and tears), which move
pathogens out of the body and/or contain disruptive enzymes. In addition,
humans have both an innate (or non-specific) and an adaptive (or specific)
immune system [18]. The innate immune system uses a number of reliable sig-
natures of non-self, such as pathogen-associated molecular patterns, to iden-
tify pathogens. An example of such a pattern is the mannose carbohydrate
molecule which is found in many bacteria but not in mammals. These patterns
have remained stable for long periods of time and are encoded in the genome
of our immune systems [38]. The innate immune system is present at birth
and it does not adapt over a person’s lifetime. If the innate immune system
cannot remove an invading pathogen, the adaptive immune system takes over.
Adaptive immunity is directed against specific pathogens and is modified by
exposure to them. Thus a memory of previous invaders, and how to deal with
them, is created and maintained by the immune system.

7.1.2 Components of the Immune System

Both the innate and acquired immune systems are comprised of a variety of
molecules, cells and tissues. The most important cells are leukocytes (white
blood cells) which can be divided into two major categories: phagocytes, and

7.1 Overview of Natural Immune Systems 109

Lymphocytes
Adaptive Immune System

Skin

Biochemical
barriers

Phagocyte
Innate immune response

Pathogens

Fig. 7.2. Natural immune system

lymphocytes. The first group belongs to the innate immune system while the
latter group mediates adaptive immunity. In this review we concentrate on
the adaptive immune system.

Lymphocytes circulate constantly through the blood, lymph, lymphoid or-
gans and tissue spaces. A major component of the population of lymphocytes
is made up of B and T cells. These cells are capable of recognising and respond-
ing to certain antigen (foreign molecules) patterns presented on the surface of
pathogens. Antigens are not the invading pathogens themselves, rather they
are molecular signatures expressed by the invading pathogen. A major role in
this recognition process is played by molecules of the major histocompatibility
complex (MHC) [107]. These molecules act to transport peptides (fragments
of protein chains) from the interior regions of a cell and present these pep-
tides on the cell’s surface. This mechanism enables components of the immune
system to detect infections inside cells, without having to penetrate the cell’s
membrane.

The control of adaptive immunity can be divided into two branches: hu-
moral immunity which is controlled by B cells, and cellular immunity which
is controlled by T cells. Humoral immunity is mediated by specially designed
proteins or antibodies contained in bodily fluids (or ‘humors’), and it involves
the interaction of B cells with antigens. Cellular immunity is cell-mediated,
and plays an important role in the killing of virus-infected cells and tumours.

B Cells and T Cells

B cells and T cells have receptors on their surfaces which are capable of
recognising antigens via a binding mechanism. The surface of a B cell contains

110 7 Artificial Immune Systems

Table 7.1. Key immune system terms

Immune System
Component Definition

Pathogens Foreign bodies including viruses, bacteria,
multi-cellular parasites, and fungi.

Antigens Foreign molecules expressed by a pathogen
that trigger an immune system response.

Leukocytes White blood cells, including phagocytes and
lymphocytes (B and T cells) for identifying
and killing pathogens.

Antibodies Glycoproteins (protein+carbohydrate) secreted
into the blood in response to an antigenic
stimulus that neutralise the antigen by
binding specifically to it.

Y-shaped receptors (or antibodies). Antibodies possess two paratopes (each
arm of the Y-shaped receptor), which are used to match or identify molecules.
These molecules may represent proteins or fragments of proteins making up
an antigen on the surface of a pathogen. The regions on the antigen that a
paratope can attach to are called the epitopes. Identification of the antigen is
achieved by a complementary matching between the paratope of the antibody
and the epitope of the antigen. The match between the paratope and epitope
need not be perfect. To increase the number of pathogens that the immune
system can detect, individual lymphocytes can bind to a variety of antigens.
This enhances the power of the immune system, as multiple lymphocytes will
bind to an invading pathogens therefore there will be multiple signals created
in the immune system that an invader has been detected. The closer the match
between paratope and epitope, the stronger the molecular binding between
the antibody and the antigen, and the greater the degree of stimulation of the
B cell.

T Cell-Dependent Humoral Immune Response

When an antibody of a B cell binds to an antigen, the B cell becomes stim-
ulated. The level of stimulation depends on the closeness or affinity of the
match between the antibody and the antigen. Once a threshold level of stim-
ulation is reached, the B cell is activated. Before activation takes place, the B
cell must be co-stimulated by a variant of the T cell population called helper
T cells. When helper T cells recognise and bind to an antigen, they secrete
cytokines, which are soluble proteins that are used to provide signaling be-
tween the cells of the immune system. In addition to the cell-cell interaction

7.1 Overview of Natural Immune Systems 111

where the T cell can bind to a B cell, the secreted cytokines can act on B cells
to co-stimulate them.

Once the stimulation level of a B cell has reached a threshold level, the B
cell is transformed into a blast cell and completes its maturation in the lymph
nodes where a clonal expansion and affinity maturation process occurs. The
object of the clonal expansion process is to generate a large population of
antibody secreting cells and memory B cells which are specific to the antigen.
In the lymph nodes, activated B cells begin to clone at a rate proportional
to their affinity to the antigen that stimulated them. These clones undergo a
process of affinity maturation in order to better tune B cells to the antigen
which initiated the immune system response. When new B cells are generated,
the DNA strings that encode their receptors are subject to recombination,
mutation and insertion processes, and new forms of receptors are constantly
created. When a tailor-made detector is required for a specific novel antigen,
the ability of the immune system to generate diversity is enhanced by means
of a high mutation rate in the cloning process, for the genes which encode the
B cell’s Y-shaped receptors (this process is known as somatic hypermutation),
and the differential selection of the clones which best match the antigen.
The evolutionary process of creating diversity and the subsequent selection of
the variants of lymphocyte that become increasingly specific to an antigen is
referred to as clonal selection.

The T cell-dependent humoral immune response is a series of complex
immunological events. It commences with the interaction of B cells with anti-
gens. The B cells which bind to the antigen are co-stimulated by helper T cells,
leading to proliferation and differentiation of the B cells to create B plasma
and memory cells. The new plasma B cells secrete antibodies (immunoglob-
ulins) which circulate in the organism and mark the antigens by binding to
them. These antigens and the associated pathogen are then targeted by the
immune system for destruction. The steps in the process can be summarised
as follows:

i. Antigen-secreting pathogen enters the body.
ii. B cells are activated by the foreign antigen.
iii. With help of T cells, B cells undergo cloning and mutation.
iv. Plasma B cells secrete immunoglobulins which attach to the antigen.
v. Marked antigens are attacked by the immune system.
vi. Memory of the antigen is maintained by B memory cells.

T Cell Tolerogenesis

A major challenge for the immune system is to ensure that only foreign or
misbehaving-self cells are targeted for destruction. The system must be able
to differentiate between self (proteins and molecules which are native to the
organism) and non-self (cells and molecules which are foreign). In the nor-
mal creation of T cells, their receptors are randomly generated, and so could

112 7 Artificial Immune Systems

potentially bind to either self or non-self. To avoid auto-immune reactions
where the immune system attacks its host organism, it is theorised that the
cells must be self-tolerised. In the case of T cells, this process of tolerogene-
sis takes place in the thymus. One mechanism for conferring self-tolerance to
the lymphocytes as they are maturing is exposure to a series of self-proteins.
Any lymphocyte that binds to self-proteins is killed, and only self-tolerised
cells are allowed into the circulation system for lymphocytes. This represents
a negative selection process as only non-self reactive T cells are permitted to
survive.

Immune System Memory

If the immune system encounters an antigen for the first time, a primary re-
sponse is provoked in the adaptive immune system, and the organism will
experience an infection while the immune system learns to recognise the anti-
gen. In response to the invasion, a large number of antibodies will eventually
be produced by the immune system which will help eliminate the associated
pathogen from the body. After the infection is cleared, a memory of the suc-
cessful receptors is maintained to allow much quicker secondary response when
the same or similar pathogens invade thereafter. The secondary response is
characterised by a much more rapid and more abundant production of the
relevant antibody than the primary response. If a close, but not identical,
variant of the pathogen is later encountered, a secondary response can be
provoked by an antibody to the original antigen which is a sufficiently close
match for the differentiated antigens on the new pathogen. Therefore if a mu-
tated version of the original pathogen is encountered, the immune system is
already partly adapted to deal with it, based on its previous learning. This is
the concept underlying the process of immunisation against a disease using a
non-harmful variant of that disease. Although there is debate as to the pre-
cise nature of how immune system memory is maintained, in broad terms the
immune system maintains a population of long-lived lymphocytes or mem-
ory cells. Both T and B cells have memory variants. The creation of memory
cells ensures that the results of past learning are physically encoded into the
current population of lymphocytes.

Danger Theory

Although the concept of self vs non-self provides a fertile ground for the de-
velopment of algorithms for anomaly detection, a variety of alternative views
of the working of the immune system exist. The Danger Theory, proposed
by Matzinger [149, 150], challenges the traditional self vs non-self view of the
immune system, and although the theory is not complete it has attracted
the interest of immunologists in the past decade [1]. Danger theory suggests
that the self/non-self distinction is not sufficient to explain immune system
behaviour as not all foreign bodies are reacted to by the immune system

7.2 Designing Artificial Immune Algorithms 113

(for example, consuming food or breathing air does not provoke an immedi-
ate immune system response), and some self-cells (for example, faulty cells)
are targeted by the immune system. Matzinger notes that the human body
changes over its lifetime, hence there is no static notion of self. The central
tenet of the Danger Theory is that the immune system does not react naively
to non-self, but rather reacts to danger. Under this theory, it is considered
that a cell in distress sends out an alarm signal, whereupon antigens in the
neighbourhood of this cell are captured by antigen-presenting cells such as
macrophages. The danger signal creates a zone of immune system activity
around its place of origin, and B cells producing antibodies that match anti-
gens within the danger zone get stimulated and undergo the clonal expansion
process. The key idea in danger theory is that the immune system focusses on
events which trigger a danger signal, and does not therefore react to harmless
non-self.

7.2 Designing Artificial Immune Algorithms

Even from the brief description of the natural immune system, it is apparent
that the system is intricate and complex. From a modelling perspective, it
can be considered as a sophisticated information processing system which
possesses powerful pattern recognition and classification abilities. It also has
the capability to adapt to new circumstances (problems), and can remember
solutions to problems it has previously encountered.

In designing artificial immune algorithms (AIAs) the object is to draw
metaphorical inspiration from the workings of the natural immune system,
or theories of the workings of this system, to design algorithms which can be
applied to solve computational problems. AIA typically use a limited number
of components, often only a single lymphocyte and a single form of antigen. An
application will require that both a similarity/affinity measure, and a fitness
measure are defined. Although a multitude of metaphors could be drawn from
natural immune systems for the purposes of designing AIA, we will focus on
two: the negative selection algorithm, and the clonal expansion and selection
algorithm.

7.2.1 Negative Selection Algorithm

The basis of the negative selection algorithm is the ability of the immune sys-
tem to discriminate between self and non-self, or more broadly to distinguish
between two system states, normal or abnormal. Forrest et al. (1994) [80] de-
veloped a negative selection algorithm analogous to the negative selection or
self-tolerogenesis process during T cell maturation in the thymus. Initially a
predetermined number of detectors are created randomly. During the training
(tolerogenesis) process any detector that falls within a threshold distance rs

(usually measured using Euclidean distance) of any elements of the set of self

114 7 Artificial Immune Systems

samples is discarded and replaced with another, randomly generated detector.
The replacement detector is also checked against the set of self samples. The
process of detector generation is iterated until the required number of valid
detectors is generated (Fig. 7.3). All of the resulting detectors are potentially
useful detectors of non-self. The pseudo-code for the algorithm is as follows
(S is the set of self-samples, rs is a predefined self-radius, and it is assumed
that the search-space is bounded by an n-dimensional (0,1) hypercube):

i. Detector set (D) is empty
ii. Repeat
iii. Create a random vector x, drawn from [0, 1]n

iv. For every si in S, si : i = 1, 2, ..., m
v. Calculate the Euclidean distance (d) between si and x

vi. If d ≤ rs go to step (ii)
vii. Add x (a valid non-self detector) to set D
viii. Until D contains the required number (assume N) of valid detectors

Once a population of detectors has been created, they can be used to classify
new data observations. To do this, the new data vector is presented to the
population of detectors, and if it does not fall within rs of any of them, the
data vector is deemed to be non-self. Otherwise, the new data vector is deemed
to be self. A crucial point in the negative selection process is that the immune
system does not require specific examples of non-self in creating its detectors.
Potentially, the detectors can uncover any instance of non-self, even those
never before encountered.

In using the negative selection algorithm, a choice must be made as to
the value of self-radius rs, and the number of detectors to use. The choice of
value for rs seeks to balance the detection rate and the false-alarm rate of the
system. If a small value of rs is used the detection rate for non-self will be
low, and if a high value of rs is set the false alarm rate will be high.

7.2.2 Clonal Expansion and Selection Algorithm

This algorithm is inspired by the clonal selection and affinity maturation pro-
cess of B cells once the immune system has detected a pathogen. The object
of the clonal selection process is to create a large quantity of antibodies which
will bind strongly to a specific antigen.

Adopting this metaphor in order to design an optimisation algorithm,
the antibody can be considered as a potential solution, the antigen is a test
dataset, and the degree of the binding or fit between the antibody and the
antigen represents the fitness or the quality of the solution. The objective,
therefore, is to start from an initial population of solutions, test them against
the dataset, and, using the algorithm iteratively, improve the quality of the
solutions in the population. The clonal selection metaphor can be turned into
an optimisation algorithm in a variety of ways. An outline of an algorithm
based on the CLONALG algorithm [56] is:

7.2 Designing Artificial Immune Algorithms 115

Generate a
potential detector

Does the
detector match
a self-item in

the population?

Discard the
potential detector

Add the detector to
the set of valid

detectors

No

Yes

Repeat while
number of
valid
detectors < N

Fig. 7.3. A flowchart of the creation/training process for detectors in the canonical
negative selection algorithm

i. Create an initial random population P of solution vectors (antibodies).
ii. Select a subset F of the solutions from P , biasing the selection process

towards better solutions.
iii. For each member of F (the parents), create a set of clones, with better

members of F producing more clones.
iv. Mutate each of these clones, in inverse proportion to their parent’s fitness

(the hypermutation step). Better solutions are mutated less.
v. Select a subset of the newly generated solutions S.
vi. Create a number of newly created random solutions R.
vii. Replace poorer members of P with better solutions from S and R.
viii. Repeat steps (ii)-(vii) until a terminating condition is triggered.

Clonal selection algorithms can therefore be used for optimisation purposes,
just like evolutionary algorithms or ant algorithms. The key difference between
each of the groups of algorithms is the method they use for generating variety
when seeking to iteratively improve solutions.

116 7 Artificial Immune Systems

Table 7.2. Correspondence between clonal selection and optimisation

Immune System
Component Correspondence

Antibody Rule, equation or program.

Antigens Test data.

Antibody-antigen matching Quality of the rule or program.

Cloning and mutation Generation of variety in order
to uncover better solutions.

7.3 Financial Application of the Negative Selection

Algorithm

One financial application of the negative selection algorithm would be to cre-
ate a classification system to predict whether a company will fail in the near
future. Assume that the diagnosis is to be made on the basis of ratio infor-
mation drawn from the financial statements of companies, and that a dataset
has been collected which provides examples of ratios for financially healthy
companies and also for companies which later went bankrupt.

Self is defined as financially healthy companies. Next a set of detectors (of
size D) is randomly created. Each of these detectors consists of a vector of real
numbers, corresponding to a set of accounting ratios. The negative selection
process is then applied, whereby a series of vectors of ratios corresponding
to the healthy companies is presented to the detectors. Any detector which is
identical or similar (the degree of similarity could be measured using Euclidean
distance) to a data vector corresponding to a healthy company is discarded.
As detectors are discarded, new detectors are randomly created to build up
the size of the population to D, and the newly created detectors are subject
to the same negative selection process. If a detector is created which fails to
match any vector in the training set of healthy companies, it is a potentially
useful detector of an unhealthy or failing company. Once a population of
detectors is generated, the detectors can be exposed to new data, and used
to predict whether these companies will fail or not. New data vectors which
trigger a detector, and which therefore have characteristics similar to failing
companies, are classed as failing. Otherwise the new vector is classed as a
financially healthy company.

Figure 7.4 provides a graphical representation of the model at the end
of the training process, where the area covered by detectors corresponds to
an unhealthy zone of financial ratios. For ease of display, only two ratios
are considered, and both have been normalised into the range (0,1). Any
companies outside the zone of the detectors is classed as a healthy company.

7.3 Financial Application of the Negative Selection Algorithm 117

r

(0,0)
‘Non-self’

detectors (failed
companies) of

radius r

(1,0)

(0,1)

‘Self’
zone

Healthy
company

Fig. 7.4. Example of location of detectors for corporate failure model after training.
Each axis corresponds to a financial ratio

While this basic algorithm will produce an immune-inspired classification sys-
tem, it will not be particularly efficient for a number of reasons [39]:

i. It ignores the fact that examples of past ‘failing companies’ exist.
ii. The task of generating a population of valid detectors will grow rapidly

as the size of self increases.

The first issue can be overcome by using historical examples of accounting
ratios from failing companies to seed the process of creating valid detectors,
thereby speeding up the process of creating valid detectors. The impact of the
second issue can be lessened by altering the algorithm to permit the creation
of variable-size detectors [117]. This could allow the coverage of large areas of
self space with a number of large detectors.

The negative selection algorithm can be applied to a wide variety of set-
tings. Self can be broadly defined as a normal pattern of activity, or as stable
behaviour of the system/process of interest. Dasgupta and Forrest [50] pro-
vide an example of how the negative selection algorithm could be applied to
detect novelty (defined as a change in the steady-state characteristics or nor-
mal behaviour of the system), in time-series data. Generalising this idea to
the case of designing trading systems, an AIA could be constructed to identify
different market regimes, and supply a feed into a trading system which then
selects a trading strategy which is suitable for current market conditions.

118 7 Artificial Immune Systems

7.4 Summary

Although natural immune systems are complex and consist of a huge num-
ber of individual components, they can be considered as a distributed, self-
organising system which operates in a dynamic environment. The mechanisms
of natural immune systems, including their ability to distinguish between
self and non-self states, and their ability to maintain a memory of previous
invaders, provide a rich metaphorical inspiration for the design of pattern-
recognition and optimisation algorithms. In this chapter we have discussed
how two of these metaphors, the negative selection process for T cells, and
the clonal selection and expansion of B cells, can be applied to create a clas-
sification system and an optimisation algorithm, respectively.

Part II

Model Development

8

Model Development Process

Part I of this book described a variety of biologically inspired algorithms, and
described how these could be used for modelling purposes. Part II discusses the
process of actually developing a high-quality financial model, concentrating
on the development of a market trading system.

The construction of any financial model is a multi-stage process, consisting
of the determination of the goals for the project followed by data collection,
data preprocessing, model construction, data postprocessing, model valida-
tion, and finally model implementation. It cannot be overemphasised that the
degree of success of any model/trading system is critically impacted by the
rigour of all the steps in its development process, not just the sophistication
of the biologically inspired algorithm(s) embedded in it.

8.1 Project Goals

The object of a trading system is to act as a screening mechanism, to decide
which financial assets to buy (or sell), and when to buy (or sell) them. At
the heart of any trading system is a predictive model for the market which
is being traded. Having selected the market of interest, the modeller must
define:

• what the model will forecast; and
• what performance measure is appropriate for the model.

8.1.1 What to Forecast?

Although it may seem obvious that the common goal in financial prediction
is to forecast the future price of an asset, this is not necessarily the case,
and, in any event, a raw price will not usually be an easy predictive target.
Suppose the S&P 500 index is currently 1200, and that it changes by an
average of 10 points per day. If the objective is to forecast the next day’s

122 8 Model Development Process

Set Project
Goals

Collect the
Input Data

Preprocess the
Input Data

Postprocess the
Output

Validate the
System

Implement and
Maintain the

System

Construct the
Predictive

Engine

Fig. 8.1. Seven steps in building a trading system

closing value of the index to within 3 points, this corresponds to a required
accuracy of approximately 0.25% (3 out of 1200), presenting a difficult task for
any predictive model. If the goal of the model is altered to predict the one-day
change in the index instead of the absolute level of the index, the required
accuracy drops to 3 out of 10. Changing the predictive target can substantially
impact on the ease of the predictive task. Other predictive targets which can

8.1 Project Goals 123

be used apart from the magnitude of change in price over the next x days
include the direction of the change in price (+/-) in the next x days, whether
a (for example) 2% move in price will occur in the next x days, or the expected
market condition (trending up, down or non-trending) over the next x days.
Accurate predictions of any of these would provide a very useful input into a
trading system.

8.1.2 What Performance Measure Is Appropriate?

Although many algorithms (including canonical feedforward MLPs) minimise
error measures such as mean squared error (MSE) or root mean squared error
(RMS), models constructed using these criterion may not perform well when
used for trading purposes. Squared error based goodness-of-fit criteria will
tend to penalise large errors heavily during the model construction process,
but this does not guarantee that the final model will be good at correctly
identifying and avoiding all large errors. MSE could be low, not because the
model makes no large errors, but perhaps because the model is accurate for
small changes in price which cannot be profitably traded due to trading costs,
while the model misses a substantial number of larger changes which could
have been traded profitably if they had been anticipated. Similar problems can
arise with the use of an R2 goodness-of-fit criterion, based on the correlation
of the model’s prediction and actual market changes.

Metrics such as MSE or R2 assume that the costs of predictive errors are
symmetric. This is not the case in financial prediction. The cost of an error to
a trader depends on both its magnitude and direction. If a model generates
a buy signal, but underestimates the size of the upward price movement, the
trader makes a profit despite the prediction error. A numerical prediction
error of similar magnitude but in the other direction (the model predicts that
a share’s price will increase but in fact it decreases) means the trader makes a
loss. This problem can be alleviated by using an asymmetric error function to
more heavily penalise errors where the direction of the predicted price change
is wrong.

The choice of error measure depends on the use to which the model will
be put. If the model is to be used for trading purposes, the most appropriate
measures of performance are trading returns, scaled by a measure of risk. The
trading characteristics of the developed system will depend critically on how
returns and risk are defined. The risk associated with a trading system can
be measured in a large number of ways, including its drawdown, which is the
maximum cumulative trading loss of a system during its training or testing
period. Hence a performance metric such as the Stirling ratio:

Return

Drawdown
(8.1)

could be used to evaluate a trading rule. A variant on this is the modified
Stirling ratio [61]:

124 8 Model Development Process

Return

1+Modified drawdown
(8.2)

where the modified drawdown is defined as being the max (drawdown, or 2%
of the current position). One advantage of the modified form of the ratio is
that it is more robust to minor changes in the value of drawdown, when the
absolute size of the drawdown is small. Another common risk measure is the
Sharpe ratio which compares the level of excess returns (defined as the trading
returns less the risk-free returns generated by a trading system over a period
of time) with the volatility of those returns:

Trading profit - Risk free return

Standard deviation of trading profit
(8.3)

As for the Stirling rations, high values of the Sharpe ratio are preferred. The
choice of performance (or fitness) function will determine how often the system
trades and what percentage of its trades are winning trades. For example, a
trading system could be biased to:

i. maximise the ratio of average trade profit to maximum drawdown,
ii. maximise the Sharpe ratio, or
iii. minimise the volatility of trading returns.

A particular advantage of using a methodology such as GE to construct a
trading system is that there are no requirements that the performance measure
is differentiable. Hence, the evolution of trading systems can be biased towards
whatever risk/return relationship is preferred by the trader. The evolutionary
process could be biased to favour trading rules which produce good returns
with low drawdown, or a constraint could be placed that only trading rules
which produce a drawdown of less than $x during the training period will be
permitted to evolve.

8.2 Data Collection

No matter how sophisticated the biologically inspired algorithm, the old adage
garbage-in-garbage-out (GIGO) applies. The success of a modelling effort is
largely determined by the quality of the data collected, its preprocessing, and
the postprocessing of the resulting outputs.

8.2.1 Trading Philosophy

Before detailed consideration can be given to selection of variables for inclusion
in a trading system, the trading intent and trading time-horizon of the system
must be defined. The trading intent arises from the strategy the trader intends
to adopt in identifying which financial assets to buy and sell, and must be

8.2 Data Collection 125

based on an underlying hypothesis as to how the market behaves (see Chap.
15) for an example of how trading patterns may be influenced by the time
horizon adopted by an investor). In essence, the process of constructing a
trading system consists of formulating a hypothesis of how the market works,
and then testing whether the hypothesis holds up when tested on real data.

The selection of potentially useful explanatory variables is also impacted
by the intended trading time-horizon. If a model is being constructed with
a view to assisting with long-term equity investment decisions, the relevant
variables will be those which help assess the long-term prospects for a firm’s
shares, and the investor may focus on variables which may indicate that the
value of a share has moved out of alignment with its fundamental value.
The trading intent is therefore to identify under-(or over) valued shares, and
hold the trading position for a period of time. Therefore, minor intra-day
movements in share price will not be important.

If attention is placed on short-term trading, short-term price changes will
be relevant. Is the intent to hold positions for a few days, or is the intention
to build a system for intra-day trading? For either of these time-horizons, the
focus will shift from long-term indicators of value, which will be invariant in
the short term, to daily flows of demand and supply in the market. Therefore,
the relevant explanatory variables may include technical indicators of the
underlying forces of supply and demand for the asset and inter-market data
concerning the values of related financial assets in other markets.

Whatever the trading intent and horizon, there must be a plausible re-
lationship between the selected inputs and the predictive target. The trader
cannot simply throw a group of input variables into a biologically inspired
search engine and expect it to automatically uncover something interesting.
Throwing ‘everything’ in and hoping something useful comes out will most
likely result in the production of a spurious model.

What Variables?

The range of potentially useful variables will vary depending on the market
the trading system is being constructed for. Is the model intended to trade eq-
uities, foreign exchange, commodities or financial derivative products? Taking
equity markets as an example, three primary sources of information exist:

• technical indicators,
• intermarket indicators, and
• fundamental indicators.

It is not possible to give a complete discussion of each of these sources of
information in a single text and only a brief introduction to them is provided.
Technical indicators are explanatory variables formed from various combina-
tions of current and historic asset price and transaction volume information.
They are widely used in short-term trading systems, and the language of

126 8 Model Development Process

technical analysis permeates the financial press. Technical indicators are un-
derpinned by the concept of technical analysis. Advocates of technical analysis
consider that it can be used to preprocess historic price/volume information
to uncover patterns, which when they recur can be recognised and traded on.
The next chapter discusses technical analysis, and hence only intermarket and
fundamental indicators are considered here.

Intermarket Indicators

Analysis of intermarket indicators attempts to highlight when divergences
from long-standing relationships between markets are emerging, possibly sug-
gesting that a particular market is overbought or oversold. There may also
be subtle interactions between markets whereby certain markets may lead
other markets [40]. Globalisation of companies and capital markets increases
the links between the performance of individual equity markets, with many
smaller equity markets taking general direction from major markets such as
the US. Examples of intermarket indicators which can be relevant in predict-
ing the value of an equity market index include bond prices, stock indices in
other countries, and commodity prices such as oil.

When incorporating intermarket data into a trading model, it is important
to ensure that future data is not accidentally supplied to the model. Conse-
quently, care must be taken when using data drawn from markets in different
time zones. Although the date attribute of discrete pieces of input data might
appear to agree, a model may actually be including future information from
a later time zone in making its predictions, thus biasing the performance of
the developed trading system.

Fundamental Indicators

The choice of relevant fundamental indicators will depend on the financial
market which is to be traded. Fundamental analysis can be applied to indi-
vidual firms in an attempt to assess whether their share prices are currently
under or over-valued, or it can be applied at a macro-economic level to assess
the likely performance of, for example, the equity market in its entirety.1

If the intention is to assess individual firms, useful fundamental indicators
will include current and historic information on dividends, profits, sales, assets,
debt levels, and liquidity. These factors, along with non-financial information

1An interesting parallel can be drawn here with horse racing. Some gamblers
analyse fundamental factors such as a horse’s past racing history and information
concerning jockeys, trainers, ground conditions in order to determine whether the
odds offered on a particular horse in a race are mis-priced. Such mispricings can give
rise to good-value betting opportunities. Other gamblers concentrate their attention
on what they observe in the betting markets (technical analysis). A good discussion
of both these groupings of strategies is provided in [69].

8.2 Data Collection 127

about the firm, could be compared with similar information on the firm’s
competitors to assess the firm’s competitive position versus its peers. This
information can be combined with data from a sectoral and macro-economic
analysis to form an assessment of the likely future growth potential for the
firm’s profits and dividends.

If fundamental analysis is being performed for the equity market as a
whole, the primary indicators will include the broad drivers of supply and
demand in the economy. These impact on the earnings and dividend poten-
tial of firms, therefore impacting on financial asset prices. Examples of these
indicators include:

• commodity prices,
• term structure of interest rates,
• foreign exchange rates,
• GNP,
• inflation,
• rate of unemployment, and
• budget/trade deficits.

These factors have a non-linear and time-lagged impact on each other, on the
value of individual shares, and on the equity market as a whole. In the latter
case, the impact of a change in a fundamental indicator on a market index
will vary over time as the firms comprising the market index change.

Several practical problems can arise when using fundamental indicators
drawn from macro-economic data. Fundamental indicators by their nature are
time-lagged. Hence, the unemployment rate for March will not be known until
figures are compiled in April or May, depending on the speed of collection of
the data. In using information drawn from historical databases, the modeller
must ensure that data is only presented as input to a model when it was
actually available; for example if unemployment data was an input to a model,
the input for April would actually be the lagged rate of unemployment in
(perhaps) March. If government statistics are being included as fundamental
indicators in a model, their definition and measurement should be consistent
over the period of interest. This is not always the case. Another problem that
can arise when using such data is how to deal with subsequent revisions of
the data. This can lead to a problem when using historical databases which
consist of clean (post-revision) information. A model constructed using clean
data may prove brittle when exposed to poorer-quality real-world data.

EC Approaches to Using Fundamental Indicators in a Trading

System

In the earlier discussion of the GA (Chap. 3), an illustration was provided of
how screening rules to determine which financial assets should be purchased
(or sold) could be evolved from collections of fundamental or other indicators.

128 8 Model Development Process

An alternative way of constructing a stock-picking rule is to encode ‘levels’
of a group of indicators on a string. For example, suppose the intent is to
encode different combinations of fundamental indicators on a binary string.
The first bit could encode whether the debt level of a firm was high or low
relative to the industry average, the second bit could indicate whether the
firm had experienced above-average industry sales growth over the past three
years and so on for other fundamental indicators.

High sales
growth relative

to industry
average?

High debt level
relative to
industry
average?

High level of
cash flow from

operations
relative to
industry
average?

High level of
liquidity

relative to
industry
average?

High profit
level relative
to industry
average?

Fig. 8.2. String encoding of a number of fundamental indicators. Each indicator
can be coded as a 0 (no) or 1 (yes)

If we restrict attention to a case where the rule consists of, for example, 25
binary decision variables, the total number of possible rule combinations is
225 or 33,554,432. It is clearly difficult to exhaustively examine all of these,
hence an evolutionary algorithm like the GA can be used to determine a good
stock screening or trading rule which combines these fundamental indicators.
A population of binary strings each representing a specific trading rule could
be created randomly, with the GA then selecting which of these represent a
good screening rule for investment purposes, and then applying crossover and
mutation to uncover yet better trading rules. The fitness of each rule could
be tested on historical data: if rule x had been applied over the past y time
periods, what risk-adjusted performance would it have generated?

8.2.2 How Much Data Is Enough?

There is no simple answer to this question. Generally, the more relevant data
the better. Use of small datasets increases the risk of model overfit on the
training data, with poor generalisation out-of-sample. The issue of how much
data is required is bound up with the number of parameters being estimated
in the model. An old saw in statistics is that a modeller should have at least
10 data observations for each included parameter. Hence, if a complex model
is being constructed, for example a MLP with many weights, a considerable
quantity of data may be required to robustly train the model. The curse of
dimensionality points out that the amount of data required to construct a
model increases exponentially with the number of parameters in the model.
To gain intuition on this point, consider what happens if a modeller increases

8.2 Data Collection 129

the number of explanatory variables in a linear regression model for a fixed-size
dataset. As the dimensionality of a model increases, the coverage of the data
space by the fixed-size dataset is reduced. The data points separate further
from each other in the expanded data space.

In financial applications, the quantity of data available will vary depending
on whether the model is being constructed with daily data or with intra-day
data. If daily data from a stock market is being used, approximately 250 val-
ues will be available each year. If intra-day tick-by-tick data is being used
the number of data values available for a calendar year will be considerably
greater. A problem with using daily or lower-frequency data is that if data is
drawn from a long time period, say 15 years, it is questionable as to whether
the market has remained unchanged over that period. The underlying data-
generating process for market data, unlike that for physical processes, is not
stationary. If a modeller believes that only recent data is likely to be useful,
perhaps because of significant recent changes in market regulation, but is con-
cerned that this leaves a small dataset, one way to overcome the problem is to
create a larger synthetic data series from the data available. On the assump-
tion that small changes in the inputs should produce relatively small changes
in the value of outputs, new (synthetic) data can be created by taking exist-
ing input-output data vectors, making small random changes to the inputs,
keeping the same output value as the original data vector, and adding these
new data vectors to the original dataset.

The intended lifespan of the model before it is retrained will also have an
impact on the quantity and form of input data required. If a model is only to
be used for a short period before it is replaced, it will not need to be able to
detect long-term market trends, therefore simplifying the data preprocessing
requirements. However, the risk of such a model is that it will be fragile with
respect to changing market conditions.

Penalising Model Complexity

In considering issues of data sufficiency and the number of explanatory vari-
ables to include, the lesson of Occam’s razor2 should be borne in mind. If there
are two competing explanations for an event, all other things being equal, the
simpler one is to be preferred. In order to control model size when building a
model, the error criterion can be adapted to incorporate a penalty term based
on the model’s complexity. This term acts to reduce or penalise the model’s
performance as the fitted model becomes more complex. A wide variety of
metrics from the traditional statistical literature on model selection can be
employed to manage the trade-off between model fit and model complexity,
including Akaike’s Information Criterion (AIC), minimum description length
(MDL), and Schwarz’s Bayesian Criterion (SBC).

2The philosopher William of Occam (approx. 1280-1347) is reputed to have said
‘Entia non sunt multiplicanda praeter necessitatem’ (‘Entities should not be multi-
plied more than necessary’).

130 8 Model Development Process

8.3 Selecting and Preprocessing the Data

Once a plausible set of explanatory inputs has been selected based on finan-
cial theory and intuition, the task facing a modeller is to determine which of
these inputs should be incorporated into the final model, and how the included
inputs should be preprocessed to extract the maximal useful information con-
tent. The steps of input selection and preprocessing are intimately interlinked
in practice but are separated below for ease of discussion.

8.3.1 Selection

In selecting the inputs, the first step is to perform a data audit to identify
missing data, and to filter incorrect data before data analysis starts. Methods
for this include graphically examining the data series, checking for logical
inconsistencies in the dataset (including cases where the closing price for a
period is higher than the high-price for the same period, or where the opening
price for a period is less than the low-price for that period, or where a zero
price is recorded), and the calculation of simple descriptive statistics for each
series (mean, maximum, minimum, standard deviation, and the number of
data items). These steps will help identify possible outliers in the dataset,
and will also help build the intuition that the modeller has concerning the
raw data that is being analysed.

Once the data has been cleaned, traditional statistical techniques can help
in deciding which data series are suitable candidates for inclusion in the model.
Basic tools such as examining the correlation of potential inputs with each
other and with the target output can help rule out inputs with little infor-
mation content, for example data which is invariant with respect to the pre-
dictive target, thereby focusing attention on plausible useful inputs. Linear
regression models can be constructed between sets of inputs and the target
output to identify useful inputs (do the regressions yield coefficients which
are significantly different from zero?). Factor analysis techniques can be ap-
plied to reduce the number of inputs supplied to the model, by compressing
multiple inputs into a limited number of principal components. A drawback
of these techniques is that they will not uncover non-linear relationships be-
tween inputs and outputs, and hence they can only provide suggestive rather
than definitive guides as to which inputs should be eliminated as having little
apparent information content.

It may also be useful to create new, additional data series for possible in-
clusion in the predictive model. For example if the financial market of interest
is known to be seasonal (as are many commodity markets), it is often useful
to add a seasonality variable as an input.

8.3.2 Preprocessing

One of the most time-consuming aspects of financial modelling is the prepro-
cessing of model inputs in order to make patterns in the data easier for the

8.3 Selecting and Preprocessing the Data 131

predictive engine to detect. Preprocessing has two main stages, the transfor-
mation of inputs and their normalisation.

Transformations

Data transformation can be described as the redefining of data using a pre-
defined rule. Common reasons for transforming data include the compression
of multiple raw inputs, in order to produce a single model input, and the
removal of some aspect of the data (for example a long-term trend) in order
to concentrate attention on another characteristic of the data instead.

Transformations to compress the data allow a reduction in the number of
inputs presented to the model. A simple example of such a transformation is
to use the ratio of two pieces of data (rather than the raw data). For example
the ratio of the number of advancing versus the number of declining shares
on the stock market can provide a more useful indicator of market sentiment
than would either measure on its own. Other common transforms are to use
differences such as today’s value less the value of x periods ago, the percentage
change in price between two dates, or moving averages which act to compress
time-series information in order to smooth out noise and uncover longer-term
trends in a data series.

An example of a transformation which concentrates attention on one as-
pect of the data rather than another, is the removal of a long-term trend in a
time-series. If the intention is to forecast over a short-run horizon, it is often
useful to transform the time series of interest by subtracting a y-period mov-
ing averages of their values from its current values (Fig. 8.3). If a long-term
moving average is subtracted from the current price of a financial asset, it
eliminates the longer-term trend and emphasises shorter-term swings in the
data.

More complex transformations of raw data in a time-series of price infor-
mation can be undertaken, such as the calculation of the rate of change of a
moving average or the use of first-order log difference of the price changes.
The rate of change of a moving average can be obtained from the regression:

Yt−x = α + βPt (8.4)

where Pt is today’s price and Yt−x is the moving average over the last x days.
The value of β represents the sensitivity of the moving average to a change in
today’s price. The first-order log difference of the price changes is given by:

Oi = ln

(
Pt

Pt−x

)
(8.5)

where Pt is today’s price, Pt−x is the price x days ago, and Oi is the first-
order log difference. Technical indicators provide other examples of input data
transformations.

132 8 Model Development Process

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 0 50 100 150 200 250

C
lo

se

Day

S&P 500

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0 50 100 150 200 250

C
lo

se

Day

S&P 500 - 50 Day Moving Average

Fig. 8.3. S&P 500 index for 11 March 2003 to 25 February 2004 (left) vs S&P 500
index less a 50-day moving average of the index for the same period (right)

Transformations can also be applied to the predictive target and this step
will be required if the range of output from the modelling methodology is
constrained. For example if an MLP is being used, the form of transfer function
at the output node will determine the numerical range of output which the
network can generate. If a logistic or tanh transfer function is used, the outputs
are limited to the ranges (0,1) and (-1, +1) respectively. However, neither
function is sensitive at the extreme lower or upper limits of its output range,
hence it is usually appropriate to rescale target outputs into a narrower range
such as (0.1, 0.9) for the logistic function, or (-0.9, +0.9) for the tanh function
(Fig. 8.4).

Normalisation

Normalisation is carried out to distribute the raw input data more evenly
across its range of variation, and, if necessary, to scale it into an acceptable
range for the modelling technique being utilised. An initial step may be to
examine the data in order to determine which ranges of it the modeller wishes
to focus attention on. If a data series has a small number of outlier (extreme)
observations it may be appropriate to clip the values at +/- 2 standard devia-
tions above and below the mean of the series. The object of clipping the data
is to focus attention on the range of typical values that the input assumes most
of the time, thereby making the model more sensitive to changes in the inputs
in their usual range. If, after the outliers have been removed, the remaining

8.3 Selecting and Preprocessing the Data 133

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-6 -4 -2 0 2 4 6

f(x
)

x

Logistic Function

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2 0 2 4 6

f(x
)

x

tanh Function

Fig. 8.4. Logistic and tanh functions

data is concentrated across a narrow range of values it is usually useful to
rescale it so as to spread out the data to allow the modelling technique to
more easily detect differences in the input. The object of this step is to make
the distribution of the input data series more uniform. Simple mathematical
tricks which can help in this task (depending on the nature of the raw data)
include applying the log or exponential function, squaring the data, or taking
the square root of the data.

Rescaling each input into a standard range can help ensure that each input
has an equal chance to influence the output of the model. The initially selected
inputs for the model may have widely differing magnitudes; the current value
of the S&P 500 may be 1250, whereas the US$-Euro exchange rate may be 1.2.
By rescaling all the inputs into a fixed range, (0,1) or (-1, +1), the model can
more easily place appropriate weight on each. A simple method of carrying
out this step is to apply linear scaling. For example, to rescale a value at time
t into the range (0→1), using data from the last n periods:

xrescale =

(
valuet - lowestn

highestn-lowestn

)
(8.6)

To rescale into the range (-1 +1), the above formula is adapted by subtracting
0.5 and multiplying the result by 2. An alternative method of normalisation
is to rescale based on the mean and standard deviation of the data over the
last n periods:

xrescale =

(
valuet - meann

σn

)
(8.7)

134 8 Model Development Process

The selection of the form of normalisation is influenced by the modelling
methodology. Taking the MLP as an example, the most common transfer
functions (sigmoid and tanh) are most sensitive to changes in input values
around -1 to +1. Hence, rescaling of inputs into this range will tend to in-
crease the sensitivity of the MLP. Whatever the form of transformation or
normalisation applied to the input data during the model training process,
obviously the same steps must be applied to preprocess live data when the
trading system is actually in use.

8.4 Postprocessing the Output

The ultimate output of a trading system is a signal corresponding to the action
the investor should take. Should a stock be bought or sold, or should the
investor stay out of the market altogether? Therefore it is necessary to post-
process the output of the predictive engine component of the trading system
to produce a trading signal. The trading signal generated for a given output
from the predictive engine depends on the entry, exit and money management
strategies selected by the trader.

8.4.1 Entry Strategy

An entry strategy determines what output is required from the predictive
engine before the system generates a buy (or short sell) signal, enters the
market and takes a position. An example of a simple entry strategy would be
to buy a share once a trading system predicts it will rise by 3% or more in
the next ten days. More sophisticated entry strategies could vary the amount
invested depending on the strength of the trading signal produced. Entry
filters could be built into the trading system to ensure that trades are in
round-lots and of a minimum size, to avoid small cost-inefficient purchases
being made.

8.4.2 Exit Strategy

The exit strategy determines when trading positions should be closed out. A
position may be closed out in order to capture gains on a trade or to protect
against excessive losses when a trade goes wrong, or a trade may be exited
because the market has turned. An investor can reduce trading risks by using
stop-loss and take-profit triggers. Under a stop-loss trigger, a position is sold
out once a loss of x% or of $x occurs.

The selection of a suitable stop-loss trigger can be undertaken judgemen-
tally3 or by simulation. In the latter case, the trader could simulate the per-
formance of the trading system on training data with no stop-loss trigger

3As an example of how judgement could be applied, Osler [179] provides evidence
for the clustering of stop-loss and take-profit orders in foreign-exchange markets. The

8.5 Validating the System 135

included, and produce a graph of maximum drawdown for each trade versus
the final profit outcome on that trade. This will allow estimation of the fre-
quency that a drawdown of $x or more was followed by a final trading profit,
and this can provide an input into the selection of a stop-loss trigger for the
system. Under a take-profit trigger, a gain is realised once a profit of y% or
$y occurs.

Many variants on the simple take-profit trigger exist, including a trailing
stop where a position is exited once a given level of profit has been achieved,
and a price fall then occurs (the market reverses). Alternatively, an exit can
be triggered when a subsequent sell signal is indicated by the trading system,
or after a set period of time if the take-profit trigger has not been hit.

Although the use of stop-losses can protect a trader, they will sometimes
fail. Consider the case where a company announces bad news just before the
market opens. The effect of this could be to cause the share price to gap
substantially downward at the market open, causing the price to fall below
the stop-loss trigger before it can be activated (Fig. 15.3 for an illustration
of an intra-day gap). A stop-loss is a risk-management, not a risk-insurance
tool. Other risk-management tools include the use of put and call options.

8.4.3 Money Management

Money management strategies include limiting the amount of money risked
on a single trade, a single stock/sector, or indeed on a single trading model.
Investors do not have access to infinite funds, so the drawdown characteris-
tics of trading systems is important. Generally, successful trading strategies
should produce good returns, a smooth increase in the equity curve (the cu-
mulative profits generated by the trading system over a time period), and
little clustering of losses (limited drawdowns) [87]. An example of an equity
curve is provided in Fig. 8.5.

8.5 Validating the System

Once a prototype trading system has been developed using training data,
it must be rigourously validated before going live. Trading models are typi-
cally back-tested. They are constructed using historical market data and the

affect of clustering of these orders is that trends in exchange rates tend to behave
predictably at these cluster levels. If a stop-loss level is hit, the downward trend in
price will tend to accelerate as many stop-losses are hit simultaneously. Similarly, if
an upward trending price hits a cluster of take-profits, the upward trend will tend to
halt as many investors take profits at this point. Testing this hypothesis, Osler found
clusters of take-profit orders at exchange rates characterised by ‘round numbers’
(ending in 00) with stop-loss orders clustering just beyond round numbers. It is
suggested that equity-market stops should be set just above round-number prices
[119].

136 8 Model Development Process

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

R
et

ur
n

Day

Equity Curve

Fig. 8.5. An example of a smooth equity curve from a trading system. Returns are
scaled in $000

risk/return characteristics of the trading system are examined to determine
whether they are in line with the trader’s preferences. Once the model has
been constructed, it is further tested using historical data which was not used
to train the model. The purpose of the out-of-sample testing is to determine
how robust the model is. Do the training period results generalise well to the
out-of-sample period? When splitting data into training and out-of-sample
datasets, several methods can be adopted. The simplest is a fixed split, for
example 60% of available data is used to train the model and the remaining
40% is used to validate it.

An alternative to back-testing which can be used to validate a trading
system, particularly one which trades on a short-term horizon, is to perform
shadow walk-forward testing. The system is provided with a real-time data
feed, and executes simulated trades based on this live information. The per-
formance of the system in shadowing the current market is then assessed.

Limitations of Back-testing

Although back-testing is an essential validation tool, the limitations of the
technique must be remembered. Any trading model constructed and tested
using historic data will tend to perform less well in a live environment than in
a back-test period for a number of reasons. Live markets have attendant prob-
lems of delay in executing trades, illiquidity, interrupted/corrupted data and
interrupted markets. The impact of these issues is to raise trading costs and

8.5 Validating the System 137

consequently to reduce trading profitability. In addition, markets are com-
petitive and represent a Red Queen: as one market participant introduces
new computational technologies in an attempt to gain a trading edge, other
traders rapidly imitate the technique to erode its profit potential [88]. Hence,
estimates of trading performance based on historical data may not be repli-
cated in live trading as other market participants will apply similar technolo-
gies. Also, if the particular trading strategy had actually been implemented
in the back-testing period, the trading activity and consequently the prices
for securities could have been affected, reducing the actual profitability of the
system.

Examining the Test Results

Whether the system is tested using historical or current market data, the char-
acteristics and results of its trades must be carefully examined. The goals for a
trading system are usually a balance of generating good returns at acceptable
risk. Once the system is constructed, its performance and the robustness of its
performance in both the training and out-of-sample periods can be evaluated
across several metrics. Measures of return which could be used to evaluate the
model’s performance include the:

• total profit over a specified period,
• number of trades,
• win-ratio (percentage of profitable trades),
• average profit per trade,
• average profit per successful trade,
• average loss per losing trade,

• the profit factor
(

total profit on winning trades
total loss on losing trades

)
.

Measures of the robustness of the trading system include:

• standard deviation of return per trade,
• Sharpe ratio,
• modified Stirling ratio,
• maximum drawdown, and
• maximum profit (loss) on a single trade.

Although risk-adjusted trading profits will be a prime metric, the modeller
will be keen to see how these profits are generated. A visual examination of
the equity curve will help reveal when profits and losses are generated by the
trading system (under what market conditions do each occur?). For example,
Fig. 8.6 suggests a case where the trading system worked well for the first 100
days trading, but its performance deteriorated notably after that suggesting
that the system needs retraining.

The modeller will also need to determine whether the profits are generated
over many trades or are generated from a very small number of big wins?

138 8 Model Development Process

What about the losses? Any big losses? A histogram of the distribution of
trade profits and losses will highlight any unusual distribution of these items.
If large profits or losses occurred, can the modeller determine why they might
have occurred? For example, was company-specific news released that day?

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

R
et

ur
n

Day

Equity Curve

Fig. 8.6. An equity curve which suggests that the model needs retraining. Return
axis is scaled in $000

In looking at the profits (losses) from individual trades, some rough statis-
tics can be calculated to help assess whether the trading system produces
results which are significantly better than chance alone. For a given sequence
of trading results, a t-test can be performed, to determine whether the aver-
age profit per trade (assuming there is one!) is significantly better than zero.
However, simple statistics should be used with caution. There is likely to be
serial dependence in the sequence of trading results as all the data is drawn
from a single time period, not randomly, which reduces the effective sample
size. Another problem is that if a number of trading systems are created,
and the developer is trying to choose the best trading system amongst them,
it is likely that one or more trading systems will exhibit results which pro-
duce a high t-value through chance alone, and multiple-comparison statistical
methods should be used.

Another issue in validating the model will be to test whether the exit
strategies for the system could be altered to filter out any major losses which
have occurred? Did the ‘take-profit’ trigger leave substantial profits on the
table on several occasions? If so, should the trigger point be raised?

8.5 Validating the System 139

The characteristics of the trading system must be similar on both the
training and out-of-sample datasets before they are considered to be robust.
Once the system goes live, the above diagnostic metrics should be captured
on a regular basis and compared with the results from both the training
period and earlier live trading periods, to highlight any degradation in the
system’s characteristics. Shifts in these metrics can provide an indication that
the system should be replaced.

When powerful modelling technologies are applied to a dataset, there is
always the danger that they could uncover a spurious pattern in the data
which just happens to work well for a time. Apart from using extensive out-
of-sample testing to reduce this possibility, the system should pass an intuition
test. Although not all biologically inspired methodologies, for example MLPs,
are amenable to easy deconstruction, rules generated by GA or GE models
can be examined. If the rules make no sense to a domain expert, this suggests
that they are likely to be spurious. The sensitivity of the model to small
alterations in its parameters (for example, its lag periods) should also be
checked. If small changes in these parameters result in large changes in the
model’s performance, the model’s results should be viewed with suspicion.

In the above discussion of model validation there has been an assumption
that a single (static) trading model has been constructed and then traded for a
period of time. An alternative (and common) methodology is to use a moving
window approach, where a model only predicts one step (or a small number
of steps ahead) at a time (Fig. 8.7). The model is continually retrained as new
data becomes available. The use of a moving window training implies that the
trading model being used changes or adapts over time (see Chap. 14 for an
example of this approach).

Cycle 3

Cycle 2

Cycle 1

Training data Test data

Fig. 8.7. A moving window approach. The system is trained and then tested. After
a period of N days (here the length of the test data period), the system is retrained
and the training data window is advanced by N days

140 8 Model Development Process

Iterating the Model Development Steps

The validation and earlier model development steps will be undertaken itera-
tively. It will usually be possible to improve the performance of the first trading
model by careful diagnosis of its errors. Are all the inputs actually influencing
the model’s decision? Do the results degrade substantially if any of the inputs
are dropped? Can the results be improved by altering the predictive target,
the input data, or the data pre-/postprocessing steps? A considerable time
may be spent iterating between model validation and model development.

8.6 Implementation and Maintenance

Once the model has gone live, a further decision faces the modeller. How long
should the model be used before being scrapped? There is no easy answer to
this question. Obviously, if a major market event occurs, for example a war, it
is quite possible that this will render the assumptions underpinning existing
trading systems redundant. The development of new financial products can
also produce a change in market structure. For example, significant changes
were noted when listed options trading began in the US in 1973, and when
stock index futures trading began in 1982. A change in the regulatory envi-
ronment governing the market of interest can also have implications for the
performance of trading systems. Examples of regulatory changes include the
introduction of circuit breakers on the NYSE, and the move to full decimal
pricing on the NYSE on 29 Jan 2001. A short discussion of each of these events
is provided to illustrate how rule changes can impact on trading systems.

Circuit Breakers

In response to the market crashes in October 1987 and October 1989, the
NYSE instituted several circuit breakers to reduce market volatility. Under
Rule 80A, when the Dow Jones Industrial Average (DJIA) moves 180 points
or more (the size of this collar is defined each quarter, based on 2% of the
average closing of the DJIA for the last month of the previous quarter) from
the previous day’s close, index arbitrage orders in component stocks of the
S&P 500 stock index are subject to a ‘tick’ test. In up-markets, buy orders
may only be executed on a minus or zero-minus tick, in down-markets sell
orders may be executed only on a plus or zero-plus tick. Once activated,
the rule applies for the rest of the day, unless the DJIA moves back within 90
points of the previous day’s close. Rule 80A was activated 51 times on 47 days
in 2001. It has been widely credited for helping to reduce market volatility.
Under Rule 80B, if the market falls by 10, 20 or 30%, (based on the average
closing of the DJIA for the last month of the previous quarter), a market-
wide trading halt is activated. The length of the halt varies from 1 hour for a
10% decline to the remainder of the day for a 30% decline. Trading systems

8.6 Implementation and Maintenance 141

which took no account of market regulations when they were back-tested, or
which were developed before significant rule changes occurred, could perform
unexpectedly when faced with real-time effects of these rules.

Decimal Pricing

Historically, shares on the NYSE were priced in eighths (of a dollar), and in
sixteenths since 1997 [9]. The move to full decimal pricing was completed in
2001. Studies undertaken after this pricing change occurred indicated that
it had resulted in a tightening of the bid-ask spread (the difference between
the buyer’s bidding price and the seller’s asking price), from a trade-weighted
average of 17c per share in 2000 to approximately 8c in 2001. This change in
market structure could clearly impact on the profitability of a trading system
constructed before the pricing rule alteration.

Monitoring the System

Even leaving obvious shocks aside, market conditions and the utility of any
trading system will change over time. All trading systems embed a simplified
representation of the real-data generation process of financial markets, and
omit many relevant variables. The significance of the omitted variables will
change over time. One rule of thumb is that a short-term trading system
should be retrained when 10-15% of the training data can be replaced with new
data. Another approach is to construct a monitoring system which looks for
degradation in the trading system’s performance. A simple monitoring system
would track recent trading performance and compare it with the performance
in earlier time periods. A change in the trading characteristics of the system,
even if the returns from the system are still satisfactory, may provide an early-
warning that current market conditions are diverging from those on which the
model was trained.

Diversification

A tried-and-tested strategy to deal with market risk is to diversify investment
funds across trading systems and across markets. No single trading system
can be expected to work well under all market conditions. To overcome this
problem multiple systems could be constructed, each of which impounds a
different representation of the market. A multi-stage trading system could be
constructed, where the first stage (a gating mechanism) classifies the ‘type’ of
market that exists at present, and then uses this to select which of a portfolio of
trading systems to use. For example, moving average techniques work poorly
in non-trending or choppy markets. Hence the system could turn off moving
average-based components of the trading system if such market conditions are
detected. Alternatively, rather than using a hard gating mechanism where a

142 8 Model Development Process

model is either used in full (100%) or not at all (0%), a soft gating mechanism
could be applied which weights the output of each individual model depending
on the current market type, and combines their individual outputs to create
a ‘community’ trading decision.

Of course, there is no requirement that a trading system should seek to
invest in all conditions. Under the coherent market hypothesis [216] markets
may be more predictable in certain phases of the business cycle than others,
and sometimes it may be better to abandon trading efforts and await more
benign conditions.

8.7 Summary

The selection and implementation of a specific biologically inspired algorithm
is only one component in the process of developing a complete trading system.
No algorithm can compensate for poor-quality data or a poor trading system
design. Earlier in the chapter, one of the major sources of information for
short-term trading systems (technical indicators) was introduced. The next
chapter discusses these in more detail.

9

Technical Analysis

Technical analysis can be defined as the attempt to identify regularities in
the time-series of price and volume information from a financial market [144].
Technical analysts contend that through study of the relative strength of the
current forces of demand and supply in the market, and the identification of
zones of price support and resistance, they can gain insight into the likely
future trading range and direction of price movement for a financial asset.
Technical analysts also believe that financial asset prices move in trends, and
that price patterns repeat themselves [160]. Although this chapter will dis-
cuss the methods of technical analysis in the context of equity markets, the
concepts can be applied to any traded financial market.

Technical Analysis and the Efficient Market Hypothesis

The position of technical analysts on market efficiency is often incorrectly
stated. Technical analysts do not consider that the market is inefficient in
processing available information into prices, rather they agree that prediction
of market prices is difficult. Strict technical analysts argue that fundamental
analysis is unlikely to generate risk-adjusted excess-returns, as markets react
quickly to new information. Due to their pessimism that fundamental analysis
can uncover new information which is not already impounded in asset prices,
technical analysts choose to study the effects rather than the causes of market
price movements. In essence, technical analysts attempt to anticipate what
other market players are likely to do next. Based on recent price/volume
information, which stocks are likely to be in or out of favour with investors in
the near future?

Although considerable controversy exists amongst financial theorists re-
garding the veracity of the claims of technical analysts, their methods are
widely applied in practice, and the language of technical analysis permeates
financial newspapers. In a study conducted by Taylor and Allen [211] on be-
half of the Bank of England, it was found that approximately 90% of financial

144 9 Technical Analysis

institutions dealing in foreign exchange in London placed some weight on in-
formation obtained from technical analysis. Greatest use was made of this
information in forming short-run exchange rate expectations. Research in a
variety of financial markets has provided at least tentative support for the
utility of technical analysis. In a study of technical analysis in stock markets,
Brock, Lakonishok and LeBaron [35] found suggestive evidence that simple
technical trading rules had predictive power and concluded that the findings
of earlier studies that technical trading rules did not have such power were
‘premature’. In the case of foreign-exchange markets, studies which suggest
that technical trading strategies may be profitable include Sweeney [210] and
Levich and Thomas [139].

9.1 Technical Indicators

The development of trading rules based on current and historic market price
(or exchange rate) and volume information has a long history [36]. The process
entails the selection of a set of technical indicators and the development of a
trading system based on these indicators.

The core concept in technical analysis is that of a trend, with future prices
considered to be more likely to continue to move in the direction of the current
pervasive trend than to reverse. The objective of trading systems developed
using technical indicators is to identify the current pervasive trend and to
trade in that direction, until a trend reversal is anticipated [160]. Technical
analysts argue that trends indicate a relative imbalance of supply and demand
for the financial asset, and that they are more likely to continue than to
reverse, giving rise to market lore such as the trend is your friend and never
buck the trend. Of course, to the extent that investors are disposed to engage in
herd behaviour as suggested by behavioural finance,1 we would expect market
trends to result.

In assessing the current trend in the market, technical analysts consider
that there is no single trend active in a market at a point in time, but that
there are multiple trends of differing periodicity (long, medium and short run),

1Lintner (1998) [142] defines behavioural finance as being ‘the study of how hu-
mans interpret and act on information to make informed investment decisions’ (p.
7). The field merges concepts from financial economics and cognitive psychology in
an attempt to construct a more detailed model of human behaviour in financial mar-
kets. Adherents to the behaviouralist school believe that decision-makers (investors)
do not always behave in a strictly rational fashion, and that their departures from
rationality stem from the nature of the mental models that people use to analyse
complex environments. The resulting biases in decision-making can produce regular-
ities in investor behaviour including over (under) reaction to price changes or news,
extrapolation of past trends into the future, lack of attention to the fundamentals
underlying a stock’s valuation, undue focus on popular stocks, and seasonal price
cycles.

9.1 Technical Indicators 145

which may be moving in different directions, combining together to produce
currently observed price movements. Agreement between trends at different
levels of periodicity is considered to indicate a stronger trading signal than
when the various trends do not agree.

Identifying Trend Reversals

If the objective is to trend-follow, identification of possible trend reversal price-
points is clearly important. Concepts which are relevant to this task include
those of support and resistance. A zone of support (or a floor) is a price level
that a financial asset has reached but not fallen below. Resistance (or the
wall) is a price level that has been reached but not breached. Therefore a
zone of support arises at prices where there is a concentration of demand, a
zone of resistance arises when there is a concentration of supply. The rationale
behind these ideas is that support levels represent the minimum price that
a large number of current holders of the stock are willing to accept, whereas
resistance represents the maximum amount that a sizeable body of potential
buyers are willing to pay. Technical analysts suggest that down-trends in a
price series tend to reverse at zones of support, whereas up-trends tend to
reverse at resistance zones. Therefore, stocks should be sold when their price
bumps into their resistance level, and bought if their price bounces off their
support level.

If these zones are breached a breakout occurs, signaling that something
unusual in terms of the stock’s recent price history has occurred, perhaps
because of a significant new information flow to the market. Once the break-
out occurs, technical analysts consider that the trend in price movement will
accelerate and new support and resistance levels will be established. There-
fore, shares breaching a resistance level should be bought, with those falling
through a support level being sold. Figure 9.1 provides an illustration of the
concepts of support, resistance and a breakout.

Behavioural finance explanations can be offered for the concepts of support
and resistance. If a share is trading in a defined range for a while, and moves
lower towards the support level, some investors may perceive that it is now
good value and buy. Conversely, if it moves back towards a resistance level,
investors who previously bought at that level may wish to sell out as their
expectations of making a profit on their purchase were unfounded [156, 197,
213].

Categories of Technical Indicators

Although there are potentially an infinite number of technical indicators which
can be formed from historic price and volume information, the financial liter-
ature [35, 160, 182] suggests that four groupings of indicators are widely used
to create entry signals by investors (the reversal of a previous entry signal gen-
erated by one of these indicators may also trigger an exit signal for investors).

146 9 Technical Analysis

Support

Resistance
Breakout

IBM share
price ($)

Fig. 9.1. Example of support, resistance and breakout, using IBM intra-day data

In essence, all these methods perform an empirical time-series analysis based
on price and/or volume data. The four groupings of indicators are:

• moving average indicators,
• momentum indicators,
• breakout indicators, and
• oscillators.

9.1.1 Moving Average

The simplest moving average filter systems compare the current price of a
share, or an exchange rate, with a moving average of the price or exchange
rate over a lagged period, in order to determine how far the current price has
moved from an underlying trend. As they smooth out daily price fluctuations,
moving averages can heighten the visibility of an underlying trend.

Hence a moving average serves as a low-pass filter, in that it transmits low-
frequency signals (trends), but dampens out high-frequency price fluctuations.
Figure 9.2 graphs the daily closing price for the Dow Jones Industrial Average
against its moving average for 10 and 200 days. It is noticeable that the longer
moving average is much less volatile than either the shorter moving average
or the actual daily value for the index.

Moving average indicators can be used either to construct a trend-following,
or a counter-trend trading system which aims to anticipate trend reversals.
Here we will concentrate on the trend-following variant. A buy trading signal
to close out short positions and/or go long can be generated when the current
price moves above its moving average, and a sell trading signal (close out long
positions and/or go short) if the current price goes below the moving average.
The intuition behind this idea is that if the price has moved above its moving

9.1 Technical Indicators 147

6000

7000

8000

9000

10000

11000

12000

2
/5
/
00

2
/1
1
/0
0

2
/5
/
01

2
/1
1
/0
1

2
/5
/
02

2
/1
1
/0
2

2
/5
/
03

2
/1
1
/0
3

2
/5
/
04

Close

10 day MA

6000

7000

8000

9000

10000

11000

12000

2
/5
/
00

2
/1
1
/0
0

2
/5
/
01

2
/1
1
/0
1

2
/5
/
02

2
/1
1
/0
2

2
/5
/
03

2
/1
1
/0
3

2
/5
/
04

Close

200 day MA

Fig. 9.2. DJIA for 2/5/00 to 2/5/04, with 10-day (left) and 200-day moving average
(right) superimposed on the closing price

average, this suggests that buying pressure has emerged and that a bullish
trend in the price is occurring. Variations on this approach include the use
of an exponentially smoothed moving average which gives greater weight to
more recent data.

MACD Oscillator

Another common use of moving averages is to construct a moving average
convergence-divergence (MACD) oscillator, calculated by taking the difference
of a short-run and a long-run moving average. If the difference is positive, it
is taken as a signal that the market is trending upward. For example a buy
signal could be generated when the shorter moving average crosses the longer
moving average in an upwards direction. A sell signal could be generated in a
reverse case. Therefore, a sample MACD trading rule could be:

IF x-day MA of price ≥ y-day MA of price

THEN Go Long ELSE Go Short

where x < y (for example x = 10 and y = 50). The MACD oscillator is a crude
band-pass filter, removing both high-frequency price movements and certain
low-frequency price movements, depending on the precise moving average lags
used. In essence, the choice of the two lags produces a filter which is sensitive
to particular price-change frequencies.

In a recursive fashion, more complex combinations of moving averages of
values calculated from a MACD oscillator can themselves be used to generate
trading rules. A sample trading rule in this case could be:

IF x-day MA of price ≥ y-day MA of price AND

148 9 Technical Analysis

a-day MA of price ≥ b-day MA of price

THEN Go Long ELSE Go Short

Even if such an input to a trading model is useful, there is no guarantee that
the optimal length of the two moving averages will be constant over time.
A more complex approach is to create several MACD oscillators and let the
trading system vote, based on the output of each oscillator whether to generate
a buy or sell trading signal.

Drawbacks of Moving Average Indicators

As moving average indicators are trend-following devices, they perform best
in trending markets. They can have a slow response to changes in trends,
missing the beginning and end of each move. They also tend to be unstable
in sideways-moving markets, generating repeated buy and sell signals (whip-
saw) leading to unprofitable trading. Trading systems using moving averages
tradeoff volatility against sensitivity. The objective is to select the lag period
which is sensitive enough to generate a useful early trading signal but which
is insensitive to random noise. One strategy is to use an adaptive moving av-
erage whereby the period of lag adjusts depending on the level of volatility in
the market. In non-trending markets, a slow (long period) moving average is
used in order to avoid the whipsaw effect.

Another difficulty which can emerge in using moving average indicators is
that the longer the period of the moving average used, the greater the quantity
of data required for model building and testing.

9.1.2 Momentum

The momentum, or rate of change, of an asset price is the ratio of a time-
lagged price to the current price:

Pricet

Pricet−x

(9.1)

Momentum can also be expressed as a percentage:

Pricet − Pricet−x

Pricet−x

(9.2)

The belief underlying this indicator is that a strongly tending price is likely to
persist for a period of time as more investors seek to buy or sell the trending
share. There is recent evidence that momentum trading strategies can work,
particularly when investing in smaller firms [109]. It is also argued by some
analysts that momentum precedes price in that price momentum peaks before
the absolute price peaks [186]. A reduction in upward momentum indicates
that an upward trend is weakening and the market is becoming overbought,

9.1 Technical Indicators 149

and may provide a leading signal that a trader should sell. Conversely, weak-
ening negative momentum indicates that the market is becoming oversold,
and provides a buy signal.

9.1.3 Breakout

There are several forms of breakout trading models. The simplest are trend-
line breakouts, usually displayed graphically. If the price of a financial asset
breaks through a trend-line (a previous resistance level) from below, a long
position is taken. If prices drop below a previous support level, a short position
is taken.

Channel Breakout

A related approach is a channel breakout model, which combines the idea of
both support and resistance. When the price of a financial asset moves out
of its recent trading range (defined by its maximum or minimum value in
a lagged time period), an entry signal is indicated. A simple example of a
trading rule derived from a breakout indicator would be to buy a financial
asset when it exceeds its previous high in the last four weeks, and conversely
to sell short (or if holding the asset already, sell it) if it falls below its previous
four week low. A simple trading rule based on this idea is:

IF C(t) ≥ Maximum[H(t, . . . , t − 20)] THEN Go Long

ELSE IF C(t) < Minimum[L(t, . . . , t − 20)] THEN Go Short

where C(t) is the closing price of the asset on day t; H(t) and L(t) are the
highest and lowest prices respectively, of the security in the last 20 trading
days.

If the market is trending, the trading range will also change over time. A
more complex approach is to plot an envelope above and below the most recent
price. One well-known version of this is to calculate Bollinger bands around a
20-day moving average of the price, at the value of +/- 2 standard deviations
of the price movement over the last 20 days. The size of the envelope changes
over time, depending on the recent volatility of the market. If the next price
recorded exceeds the envelope, an entry signal is triggered. The basic idea is
to identify when prices change more than would be expected based on their
recent volatility, possibly indicating a movement to a new trading range.

The underlying idea of all breakout indicators is simple. All large price
moves begin as small price moves, and the breakout indicators attempt to
enter the market once a small, but seemingly significant move is detected.
Systems based on these indicators are therefore trend-following. The trick
is to set the indicators at levels which discriminate well between genuinely
trending markets and markets which are just fluctuating randomly (to avoid
whipsaw) but not so conservatively that the entry into the trending market is
triggered too late to profit from it.

150 9 Technical Analysis

Pairs-Trading

A related application of the breakout idea is found in the pairs-trading in-
vestment strategy, where the divergence of interest is not between the current
and the recent price history of a financial instrument, rather it is concentrated
on the ratio of the prices of two separate financial instruments. Therefore, in
pairs-trading an investor adopts a relative value investment strategy. Suppose
you can identify two companies with similar characteristics, you would ex-
pect that their share prices would be correlated as they are exposed to the
same environment. If the ratio of the two share prices deviates notably from
its historical mean, the expectation of the trading strategy is that the ratio
will tend to revert to its long-run average. Hence, the trading strategy is to
short the outperformer, and go long on the underperformer. When the ra-
tio moves back towards its long-run average, the two trading positions are
closed. In essence, a pairs-trading strategy is a contrarian strategy, whereby
the recently (relatively) well-performing share is sold, in favour of a recently
(relatively) underperforming share. A trading system based on pairs trading
can utilise technical indicators based on a time-series of the price ratio for the
pair of shares, for example a MACD indicator based on the ratio.

9.1.4 Stochastic Oscillators

Stochastic oscillators are used to determine when the market is over-bought
or over-sold. Generally they compress price data into a fixed range, typically
0-100, hence the name oscillators (as the indicator can only vary between
the upper and lower bound). The following provides an example of a simple
oscillator:

C − L

H − L
∗ 100 (9.3)

where C is the current price, L is the lowest price in the last x days and H is the
highest price in the last x days. A value approaching 0 is considered to indicate
a market which is oversold which will tend to rise. A value approaching 100
indicates a market which is overbought. The task for a human or artificial
analyst is to develop filter rules in order to interpret the values of the indicator.
For example, critical points may be set at 20 and 80, with values greater than
80 triggering a sell signal and values less than 20 triggering a buy signal. A
sample trading rule based on this is:

IF Osc(x) > a THEN Go Short

ELSE IF Osc(x) < b THEN Go Long

where Osc(x) is the value of the oscillator calculated over the last x days,
a > b, with for example, x = 12, a = 80 and b = 20. Oscillator indicators can
be combined with signal lines to generate a market entry signal. A signal line
is calculated by taking a moving average of the oscillator. If the current value

9.1 Technical Indicators 151

of the oscillator crosses above the signal line, an entry signal (buy signal) is
triggered.

RSI Oscillator

Many variants on the basic oscillator exist. Another common version is the
Wilder Relative Strength Indicator (RSI):

100 − 100

1 + RS
(9.4)

where RS is the average of the daily gains when the share closed up (its
closing price was above its opening price) over the last N days/average of the
daily losses when the share closed down, over the last N days. A filter rule is
developed to generate trading (buy/sell) signals from the RSI. The number of
days chosen (N) impacts on the sensitivity of the oscillator. The shorter the
time period selected, the more sensitive the indicator.

%K and %D Stochastics

Two widely used stochastics are %K and %D. They are based on the ob-
servation that as prices trend upward, closing prices tend to be closer to the
upper end of their recent trading range. In down-trending markets, closing
prices tend to be closer to the lower end of their recent trading range. This
indicator seeks to determine the position of the current closing price relative
to its trading range in the last k days. The formula for calculation of %K is:

100 *
Close - Lowest value in past x days

Highest value in past x days - Lowest value in past x days
(9.5)

The indicator is scaled between 0 and 100, with higher values indicating that
the closing price is near the top of its recent trading range. A variant on this
stochastic is %D which is a moving average of %K. An example of a trading
rule based on these stochastics is:

IF (%K < a and %D < a) AND %D ≥ %K THEN Go Long

ELSE IF (%K > b and %D > b) AND %D ≤ %K THEN Go Short

where a < b. Stochastics tend to work best in sideways or non-trending mar-
kets, and tend to identify small price reversals in relatively flat markets. In
strongly trending markets they are less useful, and can become stuck at ex-
treme values at either end of their range while the trend persists.

152 9 Technical Analysis

9.1.5 Volume Data

The same market dynamics that give rise to price also give rise to trading
volume. Technical analysts believe that volume is an important technical in-
dicator as volume is considered to precede price [119]. Therefore changes in
volume can act as a lead indicator of coming price changes. An intuitive ex-
ample of this would be the fall-off in buying pressure and trading volume,
that occurs as a share nears a price peak (a consensus in the market that the
asset is fully valued).

Price and volume information can be combined to obtain a measure of
market strength. A market is considered strong by technical analysts if both
price and volume are rising. Therefore, a buy signal generated by a trend-
following system, perhaps based on moving averages, may be confirmed by
comparing current period volume with a lagged moving average of volume.
If current trading volume exceeds a lagged moving average of volume, this
suggests that other investors are ‘participating’ in the trend, suggesting that
the buy signal is strong.

Ease-of-Movement Indicator

Volume is also closely related to price volatility. The greater the divergence
in the opinions of investors as to the true worth of a financial asset, the more
likely that the asset will be traded from a pessimistic investor to an opti-
mistic one. One measure which is sometimes used to examine the relationship
between price and volume changes is the Ease-of-Movement indicator. High
(positive) ease of movement values occur when prices are moving upwards
on low volume, low (negative) ease-of-movement values occur when prices
are moving downwards on light volume. If prices are not moving, or if heavy
volume is required to move prices, ease of movement values are close to zero.
Generally, the indicator is traded by buying equities when the indicator crosses
zero to become positive, and selling when it crosses zero to become negative.
The ease-of-movement indicator is calculated using the formula in (9.6), where
the mid-point move and the box ratio are calculated as in (9.7) and (9.8).

EOM =
Mid-point move

Box Ratio
(9.6)

Mid-point move =
(Today’s high + today’s low)

2
(9.7)

− (Yesterday’s high + yesterday’s low)

2

Box Ratio =
Volume (in 10,000s)

Today’s high - today’s low
(9.8)

9.1 Technical Indicators 153

Trading Volume and Financial Economics

The study of trading volume has also attracted the attention of financial
economists. GARCH (generalised auto regressive conditional heteroskedacity)
models have been applied by financial economists to examine the time-varying
nature of stock-price volatility, measured as absolute or squared price changes,
usually employing explanatory variables such as trading volume. These mod-
els suggest a positive relationship between trading volume and share-price
volatility. Another implication of these findings is that if the market is divided
into periods of high and low volatility, in the first case price trends persist
for shorter time periods than expected (the market constantly switches direc-
tion), whereas in periods of low volatility trends in price tend to persist for
longer than would be expected if they were truly random.

An analysis of volume data for most financial markets shows that raw
volume data tends to be volatile. Trading models incorporating volume data
often smooth it by using a moving average of volume, or the rate of change of
volume over a recent time period, rather than a raw volume input. Just as for
price data, indicators can be constructed to examine the level of momentum
in volume data.

9.1.6 Other Indicators

Many other indicators of market sentiment can be included in a trading model,
including:

• recent changes in value of market index;
• number of advancing/declining issues as a percentage of all issues; technical

analysts suggest that this metric should move in the same direction as
general market prices;2

• number of shares reaching new highs vs number of shares reaching new
lows;

• short-interest ratio;
• volume of options traded;
• ratio of put vs call options traded, and
• the VIX index.3

2A more sophisticated version of this metric is the Arms Index or TRIN (Trad-

ing Index), defined as

„
Number of advancing issues/Number of declining issues
Volume of advancing issues/Volume of declining issues

«
,

where volume is the number of shares traded.
3The CBOE Market Volatility Index (VIX) is a measure of the volatility expec-

tations for the US equity market. It provides investors with up-to-the-minute market
estimates of expected volatility by using real-time OEX index option bid/ask quotes.
The index is calculated by taking a weighted average of the implied volatilities (the
volatility percentage that explains the current market price of an option) of eight
OEX calls and puts, which have an average time to maturity of 30 days. Although

154 9 Technical Analysis

As well as constructing technical indicators for the market which it is intended
to trade, they can be calculated for time-series of financial data drawn from
related markets (intermarket data). Technical indicators are not used in isola-
tion, and analysts will look for confirmation between indicators before relying
on them. Trading systems based on technical analysis can, and often will,
combine indicators from several financial markets.

9.2 Using Technical Indicators in a Trading System

Technical indicators can be incorporated in two ways as an input in a trading
model. Individual indicators can be used directly as model inputs, or, alter-
natively, indicators can be preprocessed to produce a model input by taking
ratios of individual indicators, or through the use of IF-THEN statements (as
above). As an example of the latter, a 0 or 1 could be output from a com-
pound rule IF-THEN rule, such as IF (indicator x > 2) AND (indicator y <
4) THEN ‘trading signal’ (buy/sell).

Looking at the form of the above IF-THEN rule, it is apparent that a
trader will face several subsequent decisions if he decides to use technical
indicators as inputs to a trading system:

• Which indicators will be used?
• What parameter values (lag periods/trigger values) should be used?
• How should the indicators be combined to produce a trading signal?

This represents a combinatorial problem. Using traditional modelling methods
to determine these choices is likely to prove problematic, as there are effec-
tively an infinite number of possibilities open to the modeller. This suggests
that an evolutionary algorithm in which the model structure and model in-
puts are not fixed a priori will have particular potential for generating trading
rules drawn from individual technical indicators.

Technical Indicators as a Regime Detector

Technical indicators can act as a regime detector. For example, consider the
expression RSI15(t) < 0.25 (a test of whether the RSI over the last 15 days
is less than 0.25). If this is true, it indicates that there have been heavy price
falls in recent trading days. This ‘state of the market’ information could be
combined with other technical indicators or fundamental/inter-market data
to produce a trading signal.

the VIX is intended to indicate the implied volatility of 30-day index options, it is
used by traders as a general indication of index option implied volatility.

9.3 Summary 155

9.3 Summary

The basic premise of technical analysis is that a time-series of price and vol-
ume information has information content for the prediction of future stock
prices. Four groups of technical indicators are identified, and examination of
each group suggests that they will not respond equally well in all market con-
ditions. Each grouping responds best to specific market conditions. If a trader
is intending to develop a trading model which is primarily trend-following,
technical indicators such as moving average and momentum may be useful. If
the intention of the system is to identify short-term tops or bottoms in share
prices, then oscillator indicators may be more useful.

As already noted, the usefulness of technical analysis is disputed by many
financial economists, who point to studies which have tested simple technical
indicators and found that they do not produce excess risk-adjusted returns.
A shortcoming of these studies is that they do not test technical analysis
as it is actually used by investors. Successful technical analysts do not just
apply simple rules drawn from basic technical indicators. Rather they use
rules which consist of multiple indicators, which must agree before action is
taken by the investor. In addition, successful analysts employ filter rules to
determine which trading rules should be applied in specific market conditions.

Readers who require further detail on technical analysis are referred to the
many good specialist texts which exist on this topic [119, 122, 160].

Part III

Case Studies

10

Overview of Case Studies

The case studies in the following ten chapters illustrate how the biologically
inspired methodologies discussed in earlier chapters can be applied to real-
world financial applications. Each case is concluded with a few suggestions as
to how the developed model could be extended. A brief synopsis of each case
follows.

The first case study is an application of a basic feedforward MLP to con-
struct a financial prediction model. The second case provides an example of
a hybrid GA-MLP methodology. The GA is employed to evolve the weight
vectors and network structure, but could easily be adapted to also select the
model’s inputs and choice of transfer functions. The third case demonstrates
the use of GE to evolve a basic trading system, using technical indicators as
inputs. A particular utility of the GE methodology is that it can be used to
automate both the hypothesis generation and hypothesis optimisation steps.
The approach also allows the evolution of trading models with investor-desired
risk/return characteristics. The fourth case demonstrates an extension of the
third case by demonstrating how GE can be combined with a moving-window
approach, to create a real-time adaptive trading model. The fifth case also
extends the third case, using high-frequency data, and by illustrating the im-
portance of choosing exit strategies in a trading system carefully. The sixth
case demonstrates how GE can be used to evolve a trading system for spot
foreign exchange markets.

The final four cases demonstrate the broad utility of biologically inspired
methodologies concentrating on the prediction of corporate failure and corpo-
rate bond ratings. The seventh and eighth cases provide an example of how
GE and an ant colony-inspired algorithm, respectively, can be applied to con-
struct a model that anticipates corporate failure. The ninth and tenth cases
demonstrate how GE and AIS can be used to evolve models for corporate
bond rating.

A number of the cases in the following chapters have been co-authored,
and we wish to acknowledge the contribution of our co-authors. Ian Dempsey
co-authored the adaptive trading with GE chapter (Chap. 14). Peter Keenan,

160 10 Overview of Case Studies

Katrina Meagher and Edward Carty contributed to the development of the
intra-day trading case study (Chap. 15). Yue Xi and Qiang Han contributed
to the ant-model corporate failure case (Chap. 18). Finally, Peter Keenan,
Alice Delahunty and Denis O’Callaghan contributed to the AIS bond-rating
chapter (Chap. 20).

11

Index Prediction Using MLPs

A market index is comprised of a weighted average measure of the prices
of the individual shares which make up that market index. Movements in a
market index are therefore indicative of changes in the balance of supply and
demand for the individual shares making up the index. Apart from acting as
a general barometer of the market, the values of a variety of exchange-traded
funds (ETFs)1 and a number of futures and options products are tied to
the values of market indices. Hence, the ability to even partially forecast the
future value of an index would be of considerable interest to investors trading
these products. This case study examines the ability of a series of multi-layer
perceptrons (MLPs) to predict the five-day percentage change in the value of
the UK’s FTSE 100 index during the period June 1995 to December 1996,
using a combination of technical, fundamental and intermarket data.

Figures 11.1 and 11.2 provide two graphical perspectives of the five-day per-
centage change in the value of the FTSE 100 index. Figure 11.1 suggests
that while most 5-day changes are within a range of −/ + 2% percent, larger
changes are not uncommon. Large swings occur quite a bit more often than
would be expected if they followed a normal distribution. Figure 11.2 displays
the changes in a histogram format, and includes a normal curve for reference
purposes. The histogram of the five-day percentage change displays a lep-

1An ETF aims to mirror the performance of a particular market index. Therefore,
an investor aiming to produce a return which is tied to the performance of a market
index need not buy a basket of individual shares, but can instead buy an ETF
product. ETFs are themselves quoted on stock markets and can be bought and
sold just like shares of companies. ETFs go under a variety of unusual names like
Qubes which mimic the performance of the Nasdaq 100 index (ticker symbol QQQ),
Diamonds which mimic the performance of the Dow Jones Industrial Average, and
Spiders which mimic the performance of a number of S&P indices. In addition to
ETF products which track broad market indices, there are also ETFs which track
the performance of sectoral indices. ETF products are available for most large stock
exchanges. Traders can also ‘short’ ETFs and buy them on margin.

162 11 Index Prediction Using MLPs

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400

Va
lue

Time

FTSE100 Market Index

FTSE100 5 day % change

Fig. 11.1. A plot of the five-day % change in the value of the FTSE 100 over the
period 1/1/92 to 31/12/96. The y-axis represents the % change in the index over a
five-day period

tokurtotic distribution, which is a general characteristic of time-series of price
changes of equities. Leptokurtotic or heavy-tail distributions exhibit more fre-
quent large positive and negative price changes than would be expected if
price changes followed a normal distribution. Distributions of financial data
also exhibit higher ‘peaks’ than would be expected if they followed a normal
distribution. Distributions with these two properties are sometimes referred
to as stable Paretian or fractal distributions.

11.1 Methodology

The predictive horizon, that is the length of time of the financial forecast,
plays a significant role in determining the utility of potential input variables in
index prediction. For example, many macroeconomic variables that would be
expected to play a role in determining stock prices are reported infrequently
and are predominantly invariant in the context of a short-term prediction
model. Future expectations of these variables are not invariant, but by their
very nature are difficult to observe!

11.1 Methodology 163

Fig. 11.2. A histogram of the five-day % changes in the value of the FTSE 100 over
the period 1/1/92 to 31/12/96. The x-axis is denominated as the % change in the
index over a five day period

Input Selection

The inputs used in the model in this case study were selected from a range
of technical, fundamental and intermarket data suggested in prior literature
[35, 37, 63, 160]. Initially, a series of technical indicators drawn from price,
volume and options data were calculated. These included a variety of moving
averages, relative strength indicators, oscillators and lagged measures. Chap.
9 provides an introduction to technical indicators and technical analysis. An
infinite number of technical indicators could be calculated based on historic
index data. In this case we restricted attention to indicators calculated within
a 20 day period prior to the forecast period.

In order to select the final subset of technical indicators used as inputs to
the model, several data selection tools were employed, including correlation
analysis, the construction of regression models and the construction of prelim-
inary MLPs. A similar selection process was applied to select the intermarket
and fundamental indicators. Ten inputs were included in the final model:

i. 5-day lagged percentage change in the value of the FTSE 100 index
ii. 20-day lagged percentage change in the value of the FTSE 100 index
iii. Ratio of the 10 vs 5-day moving average of the value of the FTSE 100 index
iv. Ratio of the 20 vs 10-day moving average of the value of the FTSE 100 index
v. Bank of England Sterling index

164 11 Index Prediction Using MLPs

vi. S&P 500 composite index(t)−(t−5)

vii. LIBOR 1-month deposit rate
viii. LIBOR 1-year deposit rate
ix. Aluminium ($ per tonne)
x. Oil ($ per barrel)

The first two inputs provide the model with a measure of the ‘momentum’
in the market, and also with the ability to discern whether a short-run 5-day
trend in the market index agrees with the longer, 20-day trend. The next two
inputs calculate two moving average convergence-divergence (MACD) metrics
of differing length. A measure of the BoE Sterling index is included as changes
in the Sterling exchange rate against major trading partners can be expected
to impact on the domestic and overseas earnings of firms in the FTSE 100
index. For similar reasons, the model is provided with inputs on the major
raw materials oil and aluminium. Changes in exchange rates and commodity
prices also provide a leading indicator of inflation rates. Finally, two measures
of interest rates (London inter-bank rates) are provided, each of differing term.
Interest rates affect share prices in a multitude of ways, by altering the rate of
return which can be earned on competing financial assets such as bonds and
bank deposits, by their impact on the borrowing costs of firms, and by their
impact on the general macroeconomic climate. To satisfy the constraints of
the MLP model, and to facilitate learning, all inputs were normalised into the
range (-1,1).

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 0 100 200 300 400 500 600 700 800 900 1000

V
al

ue

Time

Stock Market Index

FTSE100 train

Fig. 11.3. A plot of the FTSE 100 over the training period

11.1 Methodology 165

 3400

 3450

 3500

 3550

 3600

 3650

 3700

 0 20 40 60 80 100 120 140

V
al

ue

Time

Stock Market Index

FTSE100 test 1

 3600

 3650

 3700

 3750

 3800

 3850

 3900

 0 20 40 60 80 100 120 140

V
al

ue

Time

Stock Market Index

FTSE100 test 2

 3600

 3650

 3700

 3750

 3800

 3850

 3900

 3950

 4000

 4050

 4100

 4150

 0 20 40 60 80 100 120 140

V
al

ue

Time

Stock Market Index

FTSE100 test 3

Fig. 11.4. A plot of the FTSE 100 over each of the three out-of-sample test periods

Dataset

The data used in model development and testing was drawn from the period
1/1/92 to 31/12/96. Each model was developed using 918 days of trading data.
A total of 793 days data was used to train each model. To reduce the problem
of overtraining, model performance on the remaining 125 days of data (the val-
idation dataset) was used to select the best model. The models were tested out
of sample on three subsequent six-month periods (10/7/95-31/12/95, 1/1/96-

166 11 Index Prediction Using MLPs

28/6/96 and 1/7/96-31/12/96). Figure 11.3 provides a graph of the FTSE
100 index over each of the train/test periods. Testing each six-month period
separately facilitated the examination of the evolution of the predictive per-
formance over time.

��
��
��

��
��
��

��
��
��

��
��
��

a0 to ai

b0 to bi

Fig. 11.5. The MLP model adopted for this case study has 11 input nodes, 6
hidden nodes, and a single output node

11.1.1 Model Selection

In developing the final MLP models, a fixed 11:6:1 structure was utilised (see
Fig. 11.5):

yt = L

⎛
⎝ 5∑

j=0

wjL

(
10∑

i=0

biwij

)⎞
⎠ (11.1)

where bi represents inputi (b0 is a bias node), wij represents the weight
between input nodei and hidden nodej , wj represents the weight between
hidden nodej and the output node, and L represents the hyperbolic tangent
function. The hyperbolic tangent function has the property of non-linearly
squashing inputs into the range [-1,+1], and can be seen in Fig. 11.6. The
size of the hidden layer was fixed a priori at six hidden nodes. The choice of
the tanh transfer function is governed by the requirement that the value of

11.1 Methodology 167

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2 0 2 4 6

f(
x)

x

tanh Function

Fig. 11.6. The hyberbolic tangent function

the index could fall as well as rise, hence the model must be able to output a
negative result.

Postprocessing the Output

Examining the typical percentage changes in the index over a five-day period,
we note that it rarely changes by more than +/- 6%. We can therefore rescale
the outputs in the training data into a [-1,+1] range by dividing them by
a factor of ten. Once the model is trained, the predicted output is rescaled
back from the range [-1,+1] by multiplying it by ten, to produce the forecast
percentage change in the index for the next five days. The choice of six nodes
in the hidden layer was arrived at after initial experimentation with differing
numbers of hidden layer nodes. The predictive accuracy of the network was
found to be fairly insensitive to a choice between five and seven hidden layer
nodes, and the final models were developed with six hidden layer nodes.

11.1.2 Model Stacking

Most reported applications of an MLP modelling methodology to index pre-
diction consist of the construction of a single model. Given the limitations
of a problem domain in which input/output relationships are dynamic and
where input data is incomplete and noisy, no single model may be dominant

168 11 Index Prediction Using MLPs

and there may be potential to improve predictive quality by building multiple
models [26].

In this case, we construct 25 separate MLP models using both different
initial starting points on the error surface (by using different weight vector
initialisations)2 and different randomisations of data between training and
(in-sample) validation datasets. This approach reduces the dependence of the
final prediction on initial conditions stemming from the order of input/output
data vectors in the dataset used for training and validation purposes.

��
��
��

��
��
��

��
��
��

��
��
��

sum

F(in)

Fig. 11.7. The MLP model adopted for this case study has 11 input nodes, 6
hidden nodes, and a single output node, and 25 separate MLP models are generated
and their outputs combined by committee to determine a trading signal

In a similar concept to the combination of the output of simple non-linear
processing elements in an individual MLP, the predictions of individual MLPs
are combined (stacked) to form a committee decision. The overall output of
the stacked network of MLPs is a weighted combination of the individual
network outputs:

F (in) =

n∑
i=1

wifi(in) (11.2)

2The ‘bad initialisation’ problems which can arise in MLPs are reduced when
using evolutionary algorithms. Evolutionary algorithms explicitly maintain a popu-
lation of potential solutions, rather than attempting to iteratively improve a single
solution, and therefore are much less susceptible to poor choices of initial starting
point

11.2 Results 169

where F(in) is the output from the stacked network for input vector (in),
fi(in) represents the output of networki, and wi represents the stacking
weight. In this example, the predictions are combined on an equally weighted,
linear basis. Thus, in calculating the predicted 5-day percentage change in
the market index, the average prediction of all 25 models is used. Figure 11.7
provides an overview of the adopted model.

The predictive ability of an individual MLP is critically impacted by the
choice of network weights. Since the back-propagation algorithm is a local
search technique, the initial weights can have a significant impact on the so-
lution chosen by the neural net. The stacking process is introduced both to
reduce this problem and to combine the predictive abilities of individual mod-
els, which may possess differing pattern recognition capabilities. The decision
to select 25 models for stacking purposes is guided by the findings of Zhang
et al. [225], which suggest that stacking 20 to 30 networks is usually sufficient
to stabilise model errors.

11.2 Results

This section outlines the results obtained in each of the out-of-sample test
periods, and discusses the robustness of the models’ predictions over time.
A simple trading system is also developed based on the models’ prediction,
and the performance of this system is benchmarked against that of a simple
buy-and-hold strategy.

11.2.1 RMSE and Correlation

Table 11.1 summarises the results for each out-of-sample test period, showing
the average RMSE, calculated as the average of the RMSEs for each of the
25 model’s individual daily predictions. This is contrasted with the RMSE of
the average prediction of all 25 models taken together.

Table 11.1. Average RMSE of each individual model’s predictions, and of the
combined prediction of all 25 stacked MLPs

Test set 1 Test set 2 Test set 3

Average of Individual Models 0.2335 0.2754 0.3598
Stacked & Combined 0.1833 0.1736 0.2143

The averaging of predictions across 25 networks has resulted in a notice-
ably lower error. It is also noteworthy that the RMSE has generally increased
over the three time periods, indicating that the predictive quality of the mod-
els is degrading over time. To investigate this point further, the correlation
co-efficients between the model’s (models’) predicted output and the actual

170 11 Index Prediction Using MLPs

percentage five-day index change were calculated. These are summarised in
Table 11.2.

Table 11.2. Average correlation actual vs predicted 5-day change averaged over the
individual models, and compared against the combined prediction of all 25 stacked
MLPs

Test set 1 Test set 2 Test set 3

Pearson Spearman Pearson Spearman Pearson Spearman
Average of
Individual 0.2830 0.2833 0.2009 0.2217 0.1669 0.1689
Models (r)

Stacked (r) 0.3973 0.4049 0.2902 0.3028 0.2231 0.2293

The predictions made as a result of averaging the predictions over 25
models show a higher correlation to the actual five-day change than do the
average correlations of the individual models. In both cases, the correlation
coefficients show degradation over time. For comparison purposes, a linear
regression model that used the same inputs as the MLPs was fitted to the
training dataset. When applied to the first out-of-sample dataset, it resulted
in a RMSE of 0.7417, and a Pearson correlation between the predicted and
the actual five-day change in the index of 0.0023, indicating the inability of
the linear regression model to usefully anticipate the five-day change in the
index value.

Model Specification

The degree of bias of the predicted values produced by the MLPs can be
assessed by regressing the predicted against the actual five day percentage
changes for the index [184]. For an unbiased forecast:

y(actual) = a + b(forecast) + u (11.3)

where a = 0, b = 1 and u is white noise. The regression of the predicted
values against actual across the out-of-sample test periods produces, y =
0.14451 + 0.4851(forecast) with standard errors for a and b of 0.0610 and
0.0686. In this case, the estimated regression co-efficients are significantly
different (at the 5% level) from 0 and 1 respectively, which leads to a rejection
of an unbiasedness hypothesis. This finding is consistent with a possible mis-
specification of the model and with the intuition that no relatively small
model is going to capture more than a portion of the complexity in the data-
generation processes of financial markets. Hence, we should remember that any
models of markets we construct are simplified representations of the complex,
underlying data-generating process. No static model will work well across

11.2 Results 171

changing market conditions. This suggests that better models will have an
adaptation mechanism. A simple means of adaptation is to retrain the model
using new data drawn from current market conditions, or to weight recent
data more heavily in model training. More complex adaptive mechanisms
include embedding an adaptive capacity in the modelling methodology itself,
for example by allowing the system to alter the inputs it uses in producing
its predictions, over time. As will be seen in following chapters, one particular
advantage of evolutionary approaches is that they can automate this step.

11.2.2 Trading System

A simple trading system was developed based on the models’ predictions. The
performance of this system was benchmarked against that of a simple buy-and-
hold strategy. The trading strategy adopted was to invest $1,000 each time the
average of the models’ predictions of the five-day percentage change exceeded
|1.5%|. This position was automatically closed five trading days later. The
actual investment at a given point in time is not determinable ex ante, and this
makes it difficult to perfectly determine the size of an appropriate, equivalent
risk, buy-and-hold investment. The approach adopted is to calculate the buy-
and-hold investment using the average daily ex post investment arising under
the MLP-driven trading strategy. Interest costs and dividends are ignored.
The comparative results of each investment strategy, ignoring trading costs,
are shown in Table 11.3. The comparative results when a 1% trading cost is
included (allowance for commission and slippage) are shown in Table 11.4.
Table 11.3 suggests that in the absence of trading costs it may be possible
to develop a profitable trading system based on the predictions of the neural
models.

Table 11.3. Comparative results of investment strategies ignoring trading costs

Trade if > |1.5%| Test set 1 Test set 2 Test set 3

Profit $130.72 $159.45 $0
Return on investment (%) 40.85 20.73 0
Win ratio (%) 100 75 n/a
Buy-and-hold profit $21.70 $4.54 $0
Buy-and-hold profit (%) 6.78 0.59 n/a

The degradation of the usefulness of the trading system over the three test
periods is consistent with a hypothesis that market structure is dynamic.
When trading costs are included in the analysis (Table 11.4), it is unclear
whether a trading system based on the models’ predictions outperforms a
buy-and-hold strategy, as the trading system shows superior performance in
the first test period and poorer performance in the second. As with all trading
systems developed and back-tested using historical price data, a number of

172 11 Index Prediction Using MLPs

Table 11.4. Comparative results of investment strategies including trading costs

Trade if > |1.5%| Test set 1 Test set 2 Test set 3

Profit $50.73 -$40.55 $0
Return on investment (%) 15.85 -5.27 0
Win ratio (%) 75 50 n/a
Buy-and-hold profit $18.50 -$3.15 $0
Buy-and-hold profit (%) 5.78 -0.41 n/a

caveats must be borne in mind. Live markets have attendant problems of delay
in executing trades, illiquidity, interrupted/corrupted data and interrupted
markets. The impact of these issues is to raise trading costs and consequently
to reduce trading profitability.

11.3 Discussion

The aim of this case was to illustrate an application of a MLP to predict the
five-day percentage change in the value of the FTSE 100 Index. The results
suggest that neural network models can be constructed which have predictive
ability, that the structure detected by the models is persistent, and that in
the absence of a major market shock predictive quality degrades gracefully.
The results also suggest that a stacking methodology can improve predictive
quality. A simple trading system, developed using the networks’ predictions
outperformed a simple buy-and-hold strategy when trading costs were ignored,
but when trading costs were included the results were ambiguous. This case
study did not attempt to develop an optimal trading system and the results
provided should be considered a lower bound on those which could be achieved
from a trading system based on the trained MLP.

Extending the Model

Extensions of this basic model would include the construction of a more so-
phisticated set of entry and exit strategies, and the testing of the utility of a
wider range of possible model inputs. In addition, it would be interesting to
investigate a number of alternative strategies to combine the 25 stacked MLP
models. For example, with a temporal adaption of the weights associated with
each layer of the stack, or by using an evolutionary automatic programming
programming approach, such as genetic programming or grammatical evolu-
tion, to generate the combination function itself.

Many, more sophisticated targets other than price change over the next
x days could have been used for the MLP. Rather than attempting to pre-
dict price changes, the MLP could be constructed to predict market ‘turning
points’ using oscillators as inputs (with the aim of buying when a market bot-
tom is indicated, and buying when a market top is indicated), or to predict

11.3 Discussion 173

forthcoming channel breakouts (with the aim of buying if an upward breakout
occurs, and selling if it is anticipated that a support level will be breached).
Another possibility is to develop an MLP to predict market turning points,
by detecting the divergence of markets which are fundamentally linked.

The case could also be extended by using a moving window approach when
training the MLP (see Chap. 14) where the system only predicts one step (or
a small number of steps ahead) at a time. The model is then continually
retrained as new data becomes available.

Opportunities for Using an Evolutionary Methodology

As can be seen in this case a great deal of effort was invested into the selec-
tion and generation of suitable model inputs, which in some cases required
and profited from the use of domain knowledge. In the event that knowledge
is unavailable, or in the worst case may not exist (yet), a method that can
automatically and adaptively select appropriate input variables could be ben-
eficial. We will see in a later study (Chap. 17) how an evolutionary automatic
programming approach can provide a solution in this scenario.

The next chapter extends the above case study by illustrating an approach
to evolve both the topology and weights of a MLP, therefore partly automating
the construction of the MLP.

12

Index Prediction Using a MLP-GA Hybrid

Applications of NNs in business and finance are generally developed through a
trial and error approach, guided by heuristics. This process is time-consuming,
and there is no guarantee that the final network structure is optimal. The ob-
jective of this case is to illustrate how an evolutionary algorithm, the genetic
algorithm (GA), can be utilised to develop both the connection structure and
connection weights for a MLP. The case examines the predictive quality of
the resulting MLP by comparing it with a benchmark MLP consisting of a
three-layer, fully connected, feedforward structure, trained using the back-
propagation training algorithm.

12.1 Methodology

The same input data is used as in the last case study, and again the objective
is to predict the five-day percentage change in the value of the FTSE 100
index. The inputs used were:

i. Five-day lagged percentage change in the value of the FTSE 100 index
ii. Twenty-day lagged percentage change in the value of the FTSE 100 index
iii. Ratio of the five vs ten-day moving average of the value of the FTSE 100 index
iv. Ratio of the ten vs twenty-day moving average of the value of the FTSE 100

index
v. Bank of England Sterling index
vi. S&P 500(t)−(t−5) composite index
vii. LIBOR one-month deposit rate
viii. LIBOR one-year deposit rate
ix. Aluminium ($ per tonne)
x. Oil ($ per barrel)

As in the last case, all inputs were normalised into the range (-1,1), as was
the predictive target.

176 12 Index Prediction Using a MLP-GA Hybrid

12.1.1 Model Construction

In constructing the MLPs several factors were held constant. The same dataset
was used for training and out-of-sample validation, and the network structure
was fixed as a three-layer feedforward network with a hyperbolic tan transfer
function. This reduced the benchmark MLP development process to a decision
regarding the number of nodes in the hidden layer.

In the hybrid MLP-GA, both the number of active connections between
the input→hidden and the hidden→output layers, as well as the values of the
connection weights were determined using the GA (Fig. 12.1). Initially, all
connections are set to 1 (connected), which ensures that the search process
starts with a fully connected network. Implicitly, by allowing the GA to evolve
the number of connections, the process also determines the number of hidden
nodes in the resulting MLP. A hidden layer node with no active output con-
nections is effectively pruned from the network, as is a hidden layer node with
no active incoming connections.

Representing the MLP

As both the connection and weight values are evolved, the strings representing
each individual MLP structure in the population acted on by the GA must
contain the information required to decode both the weights attached to each
connection in a network and a binary indicator which indicates whether each
connection is active in a network. In order to bound the search space, the
weight values were limited to a range between -0.8 and +0.8. This constraint
also helps reduce the chance that the evolutionary process will produce a
forced model with extreme weight values. In addition, bounds were set on the
maximum number of hidden nodes in the evolved MLP.

The structure of connections in each MLP can be represented as a connec-
tion matrix, consisting of 0s and 1s, where a 1 in position (x, y) indicates that
node x is connected to node y (Fig. 12.2A). The matrix can also be represented
in a linear genome form by concatenating each of its rows. The real-valued
weights corresponding to each of the connections are placed on the string in
connection order, immediately after the corresponding row of the connection
matrix. This representation ensures that the connectivity variables (off or on)
for connections into each node and the associated weights for each of these
connections are co-located on the binary string.

The Evolutionary Process

A population of 150 mixed-form genotypes was initially randomly generated.
An evolutionary process was then applied to this starting population. In order
to select pairs of model structures for reproduction, a rank order procedure
was adopted. This method ranks all solution encodings such that encoding
i is ranked ahead of encoding j when f(i) > f(j), where f(i) is the fitness

12.1 Methodology 177

��
��
��

��
��
��

��
��
��

��
��
��

a0 to ai

b0 to bi

?

Fig. 12.1. Both connections and weights are evolved to nodes in the hidden layer

of encoding i. One encoding is fitter than another when it produces a lower
RMSE on the training dataset.

A selection function derived from a negative exponential function was used
to calculate p(i), which represents the probability that encoding i is selected
for reproduction. This biases the selection process towards the highest rank-
ing solution encodings. The selection function is constrained to ensure that∑

i p(i) = 1. An election operator was also employed to ensure that the cur-
rent best individual in the population was copied unchanged into the next
generation of encodings.

Single-point crossover was applied with a probability of 0.5, the crossover
point being randomly selected from the end points of the connection ‘weight
blocks’ on the genotype. A simple mutation operator was applied to each el-
ement of the GA chromosome with a probability of 0.05. Binary elements on
the chromosome were flipped 0 to 1 or vice versa, and real-valued elements
on the chromosome were mutated by adding a randomly drawn value within
the range [-0.1,+0.1] to their current value, and limiting the resulting value to
the range [-0.8,+0.8]. After the selection, crossover and mutation processes,
the current generation of encodings was replaced by the newly generated en-

178 12 Index Prediction Using a MLP-GA Hybrid

a0 a1 a2 a3 a4 a5 a6

1 1 0 1 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 1

0 0 0 0 0 0 0

1 1 0 0 0 0 0

0 0 0 1 0 0 0

1 1 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

1 1 0 1 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0

��
��
��

��
��
��

��
��
��

��
��
��

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b0
a0 to ai

b0 to bi

CA

B

.1 .8 .0 .3 .01 .47 .23

.1

.8

.3

.0 .0 .31 .04 −.8 −.41 .7

−.11 .45 −.76 .0 .33 −.02 .5

.45

−.41

Crossover Site
Potential

Fig. 12.2. Representation of the MLP as a connection matrix (A), the GA chro-
mosome (B), and the final MLP model (C)

codings, adopting a standard generational replacement strategy with elitism,
as the best encoding is always kept.

12.2 Results

The benchmark MLP was set as an 11-7-1 structure, comprising of the ten
inputs, six hidden layer nodes, and a bias node in both the input and hidden

12.2 Results 179

layers. This results in a model with 84 weights. The results from this model
are shown in Table 12.1.

Table 12.1. Correlation coefficients and coefficients of determination (between
actual and predicted outputs) for the fully connected (11-7-1), feedforward network

Training data Test set 1 Test set 2 Test set 3

r 0.2910 0.2937 0.2899 0.0945
R2 0.0846 0.0862 0.0840 0.0089

The training/validation period consists of 918 data vectors drawn from 1/1/92
to 7/7/95. The out-of-sample dataset is split into three divisions of simi-
lar size, to determine whether predictive accuracy declines markedly as the
length of time from the training/validation dataset increases. The first out-
of-sample dataset consists of 125 data vectors drawn from the period 10/7/95
to 31/12/95. The second and third datasets are comprised of 130 and 132
data vectors, respectively and are drawn from the periods 1/1/96 to 28/6/96
and 1/7/96 to 31/12/96. Out-of-sample predictive performance in the first
two test datasets is generally consistent with the model’s performance on the
training/validation dataset but declines in the third period, indicating that
the MLP model requires retraining.

12.2.1 MLP-GA

The MLP-GA modelling approach does not construct a single MLP, but rather
constructs a population of MLP structures. An initial population of 150 MLPs
was generated randomly, and the evolutionary algorithm was run for 1,500
generations. The evolutionary process was terminated at this point. An exam-
ination of the population of evolved MLPs showed that a substantial number
had achieved a similar fitness level. The results from the network with highest
fitness are shown in Table 12.2.

Table 12.2. Correlation coefficients and coefficients of determination (between
actual and predicted outputs) for the highest-fitness MLP evolved

Training data Test set 1 Test set 2 Test set 3

r 0.4022 0.4453 0.3239 0.1805
R2 0.1617 0.1983 0.1049 0.0326

The results present a similar picture to those obtained from the fully con-
nected, feedforward MLP. The predictive quality of the model degrades over
the three out-of-sample test periods. The r values for the MLP constructed us-
ing a GA are noticeably better than those obtained from the fully connected,

180 12 Index Prediction Using a MLP-GA Hybrid

feedforward MLP. One notable additional distinction between the models con-
cerns the number of weights (connections) utilised in the MLP-GA hybrid.
This model utilises a structure containing 26 connections, less than half the
number utilised in the fully connected model. Table 12.3 shows the network
structure of the highest fitness member of the population of MLP-GA hybrid
models. A 1 indicates that a connection is used, a 0 indicates that it is not (the
bias node in the input layer was explicitly connected to all hidden layer nodes
and the bias node in the hidden layer was connected to the output node only).
In addition, the connection pruning implicitly selects the number of hidden
nodes. Only hidden nodes connected to both the input and output layers are
‘active’ in the final evolved network. As can be seen from Table 12.3, hidden
nodes 1, 4 and 5 have no connection to the output node and hence are not
included in the final network.

Table 12.3. Best population member MLP-GA structure

Hidden Nodes
1 2 3 4 5 6

5-day lagged change in FTSE 0 0 1 0 1 1
20-day lagged change in FTSE 0 1 0 1 0 1
5 vs 10-day MA of the FTSE 0 1 1 1 0 0
10 vs 20-day MA of FTSE 1 0 1 1 1 1
BoE sterling index 0 1 1 1 1 1
S&P 500(t−1)−(t−5) 0 0 0 1 0 0
LIBOR one-month rate 0 1 1 1 1 1
LIBOR one-year rate 1 1 1 1 0 1
Aluminium ($ per tonne) 1 0 0 0 0 1
Oil ($ per barrel) 1 0 1 1 1 0

Output Node 0 1 1 0 0 1

Despite using a sparse structure, the predictive accuracy of the model
both in and out of sample as measured using r is greater than that of the fully
connected model. This suggests that there is a substantial level of redundancy
in the structure of the fully connected model although it should be noted that
the structure of the benchmark model was determined as appearing optimal
after trial and error experimentation with alternative hidden layer sizes.

12.2.2 Analysis of Weight Vectors

Although decomposition and meaningful interpretation of the weight vectors
of a large MLP structure is not a trivial task, several methods exist which
can be employed to provide some insight into the workings of the MLP. In
order to examine the relative importance of each of the inputs, a contribution
analysis was performed. The contribution values are calculated to provide a

12.2 Results 181

guide to the influence of each input and hidden layer node on the model. The
contribution of an input is calculated as the ratio of the absolute values of all
the connection weights between that input and the hidden layer and the total
of all connection weights between all input nodes and the hidden layer.

Table 12.4 provides the weight matrix and contribution totals for the best
MLP-GA hybrid. In constructing this table, the incoming/outgoing weights
associated with hidden layer nodes and those which the GA has pruned from
the network, as well as the weights of other connections not utilised by the
network, are set to zero.

Table 12.4. Weight structure and input node contribution

Hidden Nodes Contribution
2 3 6 %

Bias to Hidden -0.2133 -0.8 0.8 14.08
5-day lagged change in FTSE 0.00 -0.1859 -0.114 2.33
20-day lagged change in FTSE -0.799 0.00 -0.5958 10.82
5 vs 10-day MA of the FTSE -0.8 -0.7098 0.00 11.72
10 vs 20-day MA of FTSE 0.00 -0.8 0.3182 8.68
BoE sterling index -0.8 0.8 -0.7982 18.62
S&P 500(t−1)−(t−5) 0.00 0.00 0.00 0.00
LIBOR one-month rate 0.6318 0.7971 -0.075 11.67
LIBOR one-year rate 0.799 -0.4 0.6827 14.61
Aluminium ($ per tonne) 0.00 0.00 0.8 6.21
Oil ($ per barrel) 0.00 -0.1628 0.00 1.26

Output Node 0.7997 -0.8 -0.5332 100

Although this technique has limitations, broadly speaking the larger the
contribution value for an input node the greater the apparent importance of
that input. A contribution value can also be calculated for the hidden layer
nodes to reveal whether any hidden node is dominating the model. Examining
the contribution values, we see that all inputs with the exception of the S&P
500 information are utilised by the model. Looking at the contribution values
for the individual inputs we note that they are highest for the Bank of England
index, LIBOR, the 20-day lagged change in the FTSE 100 index and the ratio
of the 5/10-day moving average of the FTSE 100 index. However, extreme care
should be taken when trying to interpret contribution values. The significance
of a contribution value depends on several factors, including the method of
normalisation of the underlying data series, and the way the data series was
preprocessed. For example, consider a data series where most values are close
to 0.1, but which has one value of 10. If this data series is simply rescaled
into a [0,1] range by dividing by ten, most values will end up close to zero.
Hence, even if the weights (and therefore the contribution value) associated
with that input are relatively large, it may have little practical impact on the
output of the network.

182 12 Index Prediction Using a MLP-GA Hybrid

12.3 Discussion

The objective of this case was to illustrate how the global search properties of
a GA could be applied to ascertain both a connection structure and the associ-
ated weights for a MLP. The hybrid methodology contains both a hypothesis
generation component (the GA) and a hypothesis optimisation component
(the MLP).

Utilising a series of fundamental and technical market data drawn from
the FTSE 100 index as a test bed, both the evolved and the benchmark MLPs
attempted to predict the five-day percentage change in the value of the FTSE
100 index. The results suggest that the MLP-GA hybrid model utilised a
sparse internal structure but, despite this, outperformed the fully connected
benchmark MLP. This would suggest that there may be scope for utilising
MLP-GA hybrid combinations in applications where there is a shortage of
data for model building and testing.

Scope exists to further develop the basic MLP-GA hybrid outlined in this
case. The evolutionary process could be extended to encompass the selection
of inputs, the form of transfer functions, and the number of hidden layers. The
methodology could also be extended by applying more sophisticated versions
of the GA. The GA variant adopted in this case is closely related to the
original algorithm outlined by Holland [108]. While the canonical GA is useful
in this case as an illustration of a hybrid MLP-GA approach, more powerful
alternatives now exist in the form of competent GAs, which demonstrate a
superior ability to scale to harder problems than does the simple GA. These
competent algorithms model and exploit linkages that exist between the genes
of an individual to perform a more effective search by modelling and respecting
building blocks. As already described in Chap. 3, efficient search of MLP
structures by a GA depends on a good linkage between the representation of
the MLP and the definition of the variety generation operators. In this case,
we have not attempted to optimise the design of the crossover operator. Yao
[203] and [224] provide a good discussion of methods that can be applied for
this purpose.

13

Index Trading Using Grammatical Evolution

This case provides an illustration of the application of grammatical evolution
to construct a simple trading system based on technical indicators for three
market indices, the UK FTSE, the Japanese Nikkei, and the German DAX
[171].

As noted by Iba and Nikolaev [114], there are a number of reasons to sup-
pose that the use of an evolutionary automatic programming (EAP) approach
such as GE can prove fruitful in the financial prediction domain. EAP method-
ologies can simultaneously evolve both a good selection of model inputs and
a good model form. EAP methodologies also facilitate the use of complex fit-
ness functions including discontinuous, non-differentiable functions. This is of
particular importance in the financial domain as the fitness criterion may be
complex, usually requiring a balancing of return and risk. Another useful fea-
ture of EAP is that it produces human-readable rules that have the potential
to enhance understanding of the problem domain. Another advantage of EAP
systems is that they allow for the easy construction of complex entry/exit
rules (Chap. 15).

13.1 Methodology

The FTSE data is drawn from the period 26/04/1984 to 4/12/1997 and rep-
resents the closing value of the index for each day during this period. The
training data set was composed of 440 days, and the remaining data is di-
vided into five hold-out samples totaling 2125 trading days. A graph of the
FTSE index over these periods is provided in Fig. 13.2. The DAX and Nikkei
data is drawn from the period 1/1/1991 to 3/12/1997, and two hold-out sam-
ples are used in both cases.

Graphs of each of these market indices over these periods can be seen
in Figs. 13.1 and 13.3. The division of the hold-out period into a number of
segments is undertaken to allow comparison of the out-of-sample results across

184 13 Index Trading Using Grammatical Evolution

different market conditions, in order to assess the stability and degradation
characteristics of the developed models’ predictions.

Input Selection

This case restricts attention to technical indicators. As outlined in Chap. 9,
technical indicators can be broadly grouped into four categories:

i. moving average indicators,
ii. momentum indicators,
iii. range indicators, and
iv. oscillators.

In the creation of a trading system using technical indicators, the challenge is
to select indicators, their associated parameters, and to combine the indicators
to produce a trading signal. Given the large search space that this produces,
and the impossibility of enumeratively trying all possible combinations, a
methodology such as GE has particular promise. In this case study, the first
three of the above groupings of indicators are defined in the grammar we use
to evolve the trading systems.

Trading Rules

The rules evolved by GE are used to generate one of three signals for each
day of the training or test periods: Buy, Sell or Do Nothing. A variant on
the trading methodology developed in Brock, Lakonishok and LeBaron [35]
is then applied. If a buy signal is indicated, a fixed investment of $1,000 is
made in the market index. This position is closed at the end of a fixed ten day
period. On the production of a sell signal, an investment of $1,000 is sold short
and again this position is closed out after a ten-day period. This gives rise to a
maximum potential investment of $10,000 at any point in time (the potential
loss on individual short sales is in theory infinite but in practice is unlikely
to exceed the investment of $1,000). The profit (or loss) on each transaction
is calculated taking into account a one-way trading cost of 0.2% and allowing
a further 0.3% for slippage. To allow comparison of the returns generated
by the trading system with those of a buy-and-hold investment strategy, the
total return generated by the developed trading system is a combination of
its trading return and the risk-free rate of return generated on uncommitted
funds. As an approximation this is calculated using the average interest rate
over the entire dataset.

The values of the market indices changed substantially over the training
and testing periods. Before the trading rules were constructed, these values
were normalised using a two-phase preprocessing. Initially the daily values
were transformed by dividing them by a 75-day lagged moving average. These
transformed values were then normalised using linear scaling into the range 0
to 1.

13.1 Methodology 185

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 600 800 1000 1200 1400

V
al

ue

Day

DAX Index

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 450 500 550 600 650 700 750 800

V
al

ue

Day

DAX Index

DAX - Day 440 to 805

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 850 900 950 1000 1050 1100 1150

V
al

ue

Day

DAX Index

DAX - Day 805 to 1170

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 1200 1250 1300 1350 1400 1450 1500

V
al

ue

Day

DAX Index

DAX - Day 1170 to 1535

Fig. 13.1. A plot of the DAX over the entire data set (top left). Taken from this
data set, we can see the training period (top right), and the two test periods (bottom
left and right respectively)

186 13 Index Trading Using Grammatical Evolution

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 500 1000 1500 2000 2500 3000 3500

In
de

x
V

al
ue

Time

FTSE 100

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

0 50 100 150 200 250 300 350 400

In
de

x
V

al
ue

Time

FTSE 100

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

450 500 550 600 650 700 750 800

In
de

x
V

al
ue

Time

FTSE 100

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

850 900 950 1000 1050 1100 1150

In
de

x
V

al
ue

Time

FTSE 100

1700

1800

1900

2000

2100

2200

2300

2400

2500

1200 1250 1300 1350 1400 1450 1500

In
de

x
V

al
ue

Time

FTSE 100

1900

2000

2100

2200

2300

2400

2500

2600

2700

1550 1600 1650 1700 1750 1800 1850 1900

In
de

x
V

al
ue

Time

FTSE 100

3600

3800

4000

4200

4400

4600

4800

5000

5200

5400

3200 3250 3300 3350 3400 3450 3500 3550

In
de

x
V

al
ue

Time

FTSE 100

Fig. 13.2. A plot of the FTSE 100 over the entire dataset (top), over the training
period (middle-left), and over each of the five out-of-sample test periods

13.1 Methodology 187

14000

16000

18000

20000

22000

24000

26000

28000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

V
al

ue

Day

NIKKEI

NIKKEI

14000

16000

18000

20000

22000

24000

26000

28000

0 50 100 150 200 250 300 350 400

V
al

ue

Day

NIKKEI

NIKKEI - Day 75 to 440

14000

16000

18000

20000

22000

24000

26000

28000

0 50 100 150 200 250 300 350 400

V
al

ue

Day

NIKKEI

NIKKEI - Day 440 to 805

14000

16000

18000

20000

22000

24000

26000

28000

0 50 100 150 200 250 300 350 400

V
al

ue

Day

NIKKEI

NIKKEI - Day 805 to 1170

Fig. 13.3. A plot of the Nikkei over the entire data set (top left), over the training
period (top right), and over the two test periods (bottom left and right respectively)

188 13 Index Trading Using Grammatical Evolution

13.1.1 GE System Setup

When applying GE to a problem one must first decide what form a solution
will take and design a grammar that will allow the construction of these solu-
tions, providing a suitable set of functions, variables and syntactic rules. The
grammar used to create the trading systems in this case study includes func-
tion definitions of moving average, momentum and trading range, permitting
the inclusion of technical indicators using these functions in the generated
trading systems. The grammar is outlined below. In this case we have explic-
itly stated the set of terminals (T), non-terminals (NT), and the start symbol
(S), although in practice we only provide the set of production rules (P), the
set of terminals and non-terminals and the start symbol being described im-
plicitly within P.

N={<code>,<expr>,<fopbi>,<fopun>,<matbi>,<relbi>,<var>,<int>}

T={p,=,(,),f_and,f_or,f_not,+,-,*,>,<,>=,<=,scale,ma,day,1,2,3,4,5,10}
S=<code>
P={

<code> ::= p = <expr> ;

<expr> ::= <fopbi> (<expr>, <expr>) | <fopun> (<expr>)
| <expr><matbi><expr> | <expr><relbi><expr> | <var>

<fopbi> ::= f_and | f_or

<fopun> ::= f_not

<matbi> ::= + | - | *

<relbi> ::= > | < | >= | <=

<var> ::= <int> | day | ma(<int>,day) | momentum(<int>,day)

| trb(<int>,day)

<int> ::= 1 | 2 | 3 | 4 | 5 | 10
}

In addition to the technical indicators the grammar also allows the use of the
binary operators f_and, f_or, the standard arithmetic operators, the unary
operator f_not, and the current days index value day. The operations f_and,
f_or and f_not return the minimum, maximum of the arguments, and 1-the
argument, respectively. The daily signals generated by the trading system are
postprocessed using the following rule:

Buy = V alue < 0.33
DoNothing = 0.33 >= V alue < 0.66

Sell = 0.66 >= V alue

Fitness Function

A key decision in constructing a trading system is to determine what fitness
measure should be adopted. A simple fitness measure, such as the profitability

13.2 Results 189

of the system both in and out of sample or the excess return to a trading strat-
egy as against a buy-and-hold strategy (where the fitness measure used in the
evolutionary process is defined as the ‘excess return’), is incomplete, as it fails
to consider risk. The risk of a trading system can be estimated in a variety of
ways. One method is to consider market risk, defined here as the risk of loss of
funds due to an adverse market movement. A measure of this risk is provided
by the maximum drawdown (the maximum cumulative loss) of the system dur-
ing a training or test period. This measure of risk can be incorporated into
the fitness function in a variety of formats including

(
return

maximum drawdown

)
or

(return− x(maximum drawdown)). Each fitness function will encourage the
evolution of trading systems with good return to risk characteristics by dis-
criminating against high-risk/high-reward trading rules. In the second version
of the fitness function, x represents a tuning parameter. As the value of x is
increased, the evolved trading systems become more conservative. In this case
study, we use the second version of the fitness function, and set the value of
x to one.

Grammatical
Evolution Grammar

Trading
System

Search
Algorithm

Feedback on
the fitness of
the trading

systems

Fig. 13.4. GE system with plug-in inputs, the search algorithm (genetic algorithm)
and the grammar

13.2 Results

Thirty runs were performed on each of the three datasets, each using a popu-
lation size of 500 individuals over 100 generations. Roulette selection, steady-
state replacement (two parents generate two children with the best child en-
tering the next generation if it has better fitness than the worst member of

190 13 Index Trading Using Grammatical Evolution

the current population), bit mutation at a probability of 0.01, and a variable-
length one-point crossover operator with a probability of 0.9 were adopted.
A comparison of the best individuals evolved for each dataset to the bench-
mark buy-and-hold strategy can be seen in Tables 13.1 to 13.3, for the FTSE,
DAX and Nikkei datasets respectively. In the case of the FTSE and Nikkei
datasets the evolved rules produce a superior performance to the benchmark
strategy, while performance over the DAX dataset is not as strong. The poorer
performance for the DAX market likely results from overfitting of the evolved
rules to the training data. For each of the evolved trading rules the associated
risk is less than that of the benchmark strategy as can be seen in the average
daily investment figures reported.

Table 13.1. A comparison of the buy-and-hold benchmark to the best evolved
individual for the FTSE dataset

Trading Period Buy & Hold Best-of-run Best-of-run
(Days) Profit (US$) Profit (US$) Avg. Daily Investment

Train (75 to 440) 3071 3156 3219
Test 1 (440 to 805) 5244 1607 1822
Test 2 (805 to 1170) -1376 4710 3151
Test 3 (1170 to 1535) 1979 2387 6041
Test 4 (1535 to 1900) 1568 -173 3274
Test 5 (3196 to 3552) 3200 2221 3767

Total 13686 13908

Table 13.2. A comparison of the benchmark buy-and-hold strategy to the best
evolved individual on the DAX dataset

Trading Period Buy & Hold Best-of-run Best-of-run
(Days) Profit (US$) Profit (US$) Avg. Daily Investment

Train (440 to 805) 3835 3648 7548
Test 1 (805 to 1170) -41 -1057 8178
Test 2 (1170 to 1535) 3016 469 8562

Total 6831 3060

13.3 Discussion

The trading systems evolved by grammatical evolution demonstrate a per-
formance superior to the benchmark buy-and-hold strategy on two of the
three datasets. In addition, the risk involved with the adoption of the evolved
trading rules is less than that of the benchmark. The risk of the benchmark

13.3 Discussion 191

Table 13.3. A comparison of the benchmark buy-and-hold strategy to the best
evolved individual on the Nikkei dataset

Trading Period Buy & Hold Best-of-run Best-of-run
(Days) Profit (US$) Profit (US$) Avg. Daily Investment

Train (75 to 440) -6285 3227 9247
Test 1 (440 to 805) 59 -1115 7164
Test 2 (805 to 1170) -3824 633 9192

Total -10050 2745

buy-and-hold portfolio exceeded that of the portfolio generated by the techni-
cal trading rules because the benchmark buy-and-hold portfolio maintains a
fully invested position at all times in the market, whereas the portfolio gener-
ated by the evolved technical trading system averaged a capital investment of
$3,546, $8,096 and $8,534 over the trading periods on the FTSE, DAX, and
Nikkei datasets, respectively.

Refining the System

There is substantial potential to tweak the above model to improve its perfor-
mance. The grammar only considers a small set of technical indicators. The
incorporation of additional technical indicators and environmental informa-
tion would further improve the performance of the evolved trading rules. A
particular feature of the GE approach to creating trading systems is that it
is easy to incorporate additional inputs and/or technical indicators into the
system’s grammar.

Another extension would be to incorporate a more complex model of learn-
ing (forgetting). Glassman [90] suggested that the ‘fallibility of memory’ (p.
88) may represent a useful adaptive device when faced with a dynamic en-
vironment. In the above illustration, all historic data observations are given
equal weighting which implicitly assumes model stationarity. By a suitable
modification of the fitness function, whereby more recent data observations
are assigned a higher weighting in the model construction process, model de-
velopment could be biased towards more recent data [184]. The weighting
parameter could also be evolved as a component of the developed model. The
next chapter demonstrates how grammatical evolution can be combined with
a moving training window in order to develop an adaptive trading system.

In this case study a simple exit strategy, which automatically closed trad-
ing positions after ten days, was adopted. Therefore, in essence, the grammar
was designed to evolve good trading position ‘entry’ strategies. The current
model could easily be extended to also evolve the exit strategy by making
appropriate modifications to the grammar. The importance of optimising the
exit strategy should not be overlooked, and this issue is addressed in the
intra-day trading case in chap. 15.

192 13 Index Trading Using Grammatical Evolution

Portfolios of Trading Rules

A particular benefit of adopting a population-based approach to developing
trading rules is that multiple rules are uncovered. Each of these rules has
(hopefully) a reasonable chance of working well in the future. Rather than
implementing a trading system which relies on a single rule, for example the
best rule found, an obvious strategy is to diversify trading across a number
of the better trading rules.

There are several methods of implementing this approach. The simplest is
to allocate funds to each rule and trade them independently. Another approach
is to implement a stacked or multi-stage model, which takes the trading signals
produced by several rules, combines them, and produces a final trading signal.
A variant on this approach is to create a series of ‘families’ of trading rules,
using GE or an alternative methodology, where each family is trained using
non-homogeneous inputs. The predictions from the best rule from each ‘family’
could then be used as inputs to a second-stage model which produces the
final trading signal. Periodically the entire system could be retrained, and
new trading rules created.

14

Adaptive Trading Using Grammatical

Evolution

14.1 Introduction

Following on from Chap. 13, this case study illustrates the construction of
an adaptive trading system using GE. Rather than employing a single fixed
training period, the trading system continues to retrain as new data becomes
available using a variant on the moving window approach. This permits the
system to adapt to dynamic market conditions, while maintaining a memory
of good solutions that worked well in past market environments. In contrast
to the trading system developed in Chap. 13, the system can also adjust the
size of the position it takes in the market depending on the strength of the
trading signal which is produced.

14.2 Methodology

The trading system developed is based on moving averages. Simple exten-
sions to the grammar, embedding other technical indicators, would permit
the evolution of more complex sets of technical trading rules.

Grammar

<expressions> ::= <expressions> <op> <exp> | <exp>

<exp> ::= MA(<numExp>) | <numExp>

<op> ::= - | + | * | /

<numExp> ::= <numbers> <op> <numbers> | <numbers>

<numbers> ::= <numbers><number> | <number>

<number> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The trading rules evolved by GE using the above grammar (drawn from [57]),
generate a signal that can result in one of three trading actions: Buy, Sell
or Do Nothing. The <expressions> non-terminal produces the signal using
combinations of the MA terminal which is a moving average function.

194 14 Adaptive Trading Using Grammatical Evolution

14.2.1 Moving Window

The adaptive training process commences in the same manner as in the last
chapter. An initial training period is set aside on which the population of
proto-trading rules is trained, with the aim of evolving a reasonably compe-
tent population of trading rules after a certain number of generations (G).
The system then goes ‘live’, and begins to trade. The trading system takes
the best performing rule from the initial training period, and uses this rule to
trade for each of the following x days. After x days have elapsed, the training
window moves forward in the time-series by x days, and the current popu-
lation of trading rules is retrained over the new data window for a number
of generations g, where g < G. This training process embeds both a memory
and an adaptive capability in the trading system, as good past trading rules
serve as a starting point for trading system adaptation.

The value of g relative to that of x determines the memory/adaptiveness
balance in the trading system. A small value of g means that memory is
emphasised over adaptation, as new data has relatively less chance to influence
the trading rules. The value of g need not be fixed, and could itself be adapted
over time. For example, in periods of rapid market change a trading system
with a ‘long memory’ could be disadvantageous, whereas in stable periods
a longer memory could well be advantageous. The length of the trading/re-
training window (x) also impacts on the adaptiveness of the trading system.
If x is large, the trading rules are altered less frequently, but each adaptive
‘step’ during retraining will tend to be larger.

In implementing the moving window training process in this case, the first
440 days data is used to create the initial population of trading rules. Data
from days 1-75 is reserved to allow the evolved rules use moving averages of
up to a maximum lag of 75 days. The trading rules are trained on the data
for days 76-440, for 100 (G) generations. The trading rule which generates
the best return over the training period is then used to trade ‘live’ (out of
sample) for the next 5 days (x). The training window is then moved forward
to include these 5 days, and the population of trading rules is adapted by
retraining it for 2 or 10 (g) generations. Figure 14.1 provides a diagram of the
training/live trading process.

14.2.2 Variable Position Trading

In the last chapter, the entry strategy for each trade was to invest a constant
Dollar amount on the production of a buy or a sell signal. The relative strength
of the buy or sell signal was not considered. In this case, the trading system
adopts a more complex entry strategy, and a variable size investment is made,
depending on the strength of the trading signal. The stronger the signal the
greater the amount invested, subject to a maximum investment amount of
$1,000 (arbitrary). The amount invested for each signal is:

14.2 Methodology 195

Day
440

Day
441

Day
442

Day
443

Day
444

Day
445

Day
446

1. 3.

2.

Fig. 14.1. The initial population of trading rules is evolved using data from days
1-440 (step 1 in the diagram). Next the best of these rules is used to trade live for
five days (step 2). Finally, the training window is moved forward five days in the
dataset, and the current population of rules is retrained for g generations (step 3)

Amount invested =
Size of trading signal

Maximum trading signal
∗ 1000 (14.1)

Signals received from a trading rule oscillate around a pivot of zero. Signals
greater than zero constitute a buy signal, those less than zero constitute a sell
signal. To allow the system to decide how much to invest on a given trade using
the above rule, the maximum size of a trading signal must be determined,
and we do this in an adaptive manner. Initially we set the maximum signal
as being the size of the first buy signal generated by the system. If a signal
is subsequently generated that is stronger than this, the maximum trading
signal is reset to the new amount. If the sum to be invested is greater than
the cash available, the model will invest the cash available less the costs of
the transaction. Upon receipt of a sell signal all positions are closed.

14.2.3 Return Calculation

The total return generated by a trading system is calculated as a combination
of its trading return (net of transactions costs) and a risk-free interest return
on uninvested funds. Transaction costs are based on the cost structure used by
online trading houses, where flat fees are incurred for the opening and closing
of positions. A $10 fee is charged upon entry and exit of trades. The trading
system is constrained from making very small trades (those less than $100)
which would be uneconomic given the fixed transaction cost by including a
rule which classes all uneconomic trades as a Do Nothing signal. The fitness
measure adopted during training was the total return over the training period.

196 14 Adaptive Trading Using Grammatical Evolution

14.3 Results

The system was applied to two indices, the S&P 500 for the period January
1st 1991 to December 1st 1997, and the Nikkei 225 for the period December
10th 1992 to December 3rd 1997 (Figs. 14.2 and 14.3 display the S&P 500 and
the Nikkei 225 over the relevant time periods). The experiments examine the
effect of using two different values of g (2 and 10), and benchmark the results
obtained from the adaptive trading system against those of a ‘restart’ trading
system which retrains completely in each training window (and therefore has
no memory).

A population size of 500 individuals was used with 100 generations of
training for the initial period. A generational rank replacement strategy was
used with 25% of the weakest performing members of the population being
replaced with newly-generated individuals in each generation. Thirty runs
were conducted for each of the experiments for each market, with a crossover
rate of 0.9 and a mutation rate of 0.1 as in [57] and [59].

The rest of the results section is broken up into two parts. Section 14.3.1
reports the returns of each trading system over its training range versus the
returns made by the index over the same period. Section 14.3.2 reports the
returns made during out-of-sample trading.

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Pr
ice

Time

S&P 500

S&P 500

Fig. 14.2. The S&P 500 Index 1/1/1991 to 3/12/1997

14.3 Results 197

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 23000

 0 200 400 600 800 1000 1200 1400

Pr
ice

Time

Nikkei 225

Nikkei 225

Fig. 14.3. The Nikkei 225 Index 10/12/1992 to 3/12/1997

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 50 100 150 200 250 300

36
4

Da
y R

et
ur

n

Time

Grammatical Evolution - S&P 500 10 Gen.

Adapt
Restart

S&P 500

Fig. 14.4. Training performance on the S&P 500 for 10 generations of training at
each window increment

14.3.1 Training Returns

As the live trading window consists of 5 days, the S&P 500 dataset produced
273 distinct retraining windows, and the Nikkei 225 dataset produced 171

198 14 Adaptive Trading Using Grammatical Evolution

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 50 100 150 200 250 300

36
4

Da
y R

et
ur

n

Time

Grammatical Evolution - S&P 500 2 Gen.

Adapt
Restart

S&P 500

Fig. 14.5. Training performance on the S&P 500 for 2 generations of training at
each window increment

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

36
4

Da
y R

et
ur

n

Time

Nikkei 225

Adapt
Restart

Nikkei 225

Fig. 14.6. Training performance on the Nikkei 225 for 10 generations of training
at each window increment

14.3 Results 199

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

36
4

Da
y R

et
ur

n

Time

Nikkei 225

Adapt
Restart

Nikkei 225

Fig. 14.7. Training performance on the Nikkei 225 for 2 generations of training at
each window increment

distinct training windows. At the end of the final generation in each training
period, the return of the best trading rule (based on its fitness over that
training window) was determined. The values of the S&P 500 and Nikkei 225
indices at the start and end of each training window were also determined in
order to calculate the return to a buy-and-hold investment strategy. Figures
14.4-14.7 compare the buy-and-hold returns from the S&P 500 and Nikkei 225
with those from the adaptive and the restart trading systems.
Examining these results using both a t-test and bootstrap t-test [70], we see a
statistically significant difference between the returns generated by the adap-
tive and the restart training methodologies for the S&P 500. For the Nikkei
225 no statistical difference between the two training methods is found. This
is partly due to the behaviour of the index towards the end of the dataset
where it shows a loss of almost 40%. During this decline, the trading rules of
both the adaptive and restart paradigms generally opted to remain outside
the market and did not trade.

14.3.2 Out-of-Sample Returns

Tables 14.1 and 14.2 display the results and a breakdown of the out-of-sample
trading for each of the sets of experiments conducted for the S&P 500 and
Nikkei 225. For the S&P 500 the adaptive population experiments provided
best returns of 63% and 64% for the 2 generation and 10 generation tests

200 14 Adaptive Trading Using Grammatical Evolution

respectively, and average best returns of 48% and 44% respectively. The restart
population experiments provide best returns of 59% and 41% and average
best returns of 45% and 32% for the 2 generation and 10 generation tests
respectively. When the out-of-sample results are compared with the training
graphs in Sect. 14.3.1, in which the restart method tends to outperform the
adaptive method, it appears that the restart populations have overfit the
training data and are not generalising as well as when applied to the out-of-
sample data. For the Nikkei 225 none of the developed trading systems made
positive returns (the index itself made a return of −21%), but in all cases
the best evolved trading systems comfortably outperformed a buy-and-hold
strategy.

An interesting aspect in the comparison between the adaptive and restart
paradigms is analysing the role that memory plays in the adaptive setup,
a feature which is not present in the restart paradigm. For the S&P 500
experiments the 2 generation setup was seen to reuse trading rules from the
previous trading window 26% of the time (on average), for the 10 generation
setup this percentage of reuse grew to 32%. For the turbulent Nikkei 225
index the adaptive 2 generation setup reused rules 64% of the time, with the
10 generation setup reusing rules 52% of the time. What this highlights is
that the adaptive method can (and is) taking advantage of previous learning.
In contrast, the restart method must relearn good trading rules from scratch
in each window increment.

Table 14.1. Profit, loss and trading analysis (out-of-sample) for each setup on the
S&P 500

2 Gen. 2 Gen. 10 Gen. 10 Gen.
Adapt Restart Adapt Restart

Best (%) 63 59 64 41
Avg. Best (%) 48 45 44 32
Avg. No. Trades 125 110 174 209
Avg. Profitable Trades (%) 73 65 73 71

Table 14.2. Profit, loss and trading analysis (out-of-sample) for each setup on the
Nikkei 225

2 Gen. 2 Gen. 10 Gen. 10 Gen.
Adapt Restart Adapt Restart

Best (%) -0.15 -8 -10 -1.5
Avg. Best(%) -16 -19 -25 -21
Avg. No. Trades 49 111 88 139
Avg. Profitable Trades (%) 35 47 30 45

14.4 Discussion 201

14.4 Discussion

The case study illustrates the ability of grammatical evolution to evolve adap-
tive trading rules, which are shown to have an advantage over a static restart
approach. It is worth noting that while the rules evolved for the Nikkei 225
did not provide profitable returns, they still beat the index’s overall perfor-
mance in three of the four experiments. In one instance the adaptive approach
beat the index by 20.85% to be just 0.15% short of breaking-even, including
trading costs.

There is much scope to enhance the approach presented here. For example,
several parameters of the adaptive model in this study could be examined in
more detail, including the effect of altering the number of generations evolved
at each increment, and of altering the size of each window increment.

15

Intra-day Trading Using Grammatical

Evolution

This case utilises high-frequency time-series data to construct an intra-day
trading system for two stocks (Ford and IBM) using a grammatical evolu-
tion (GE) methodology. In order to illustrate the effect of different trade-exit
strategies on the performance of a trading system, three different exit strate-
gies are compared.

In exchange-traded markets such as equity markets, a tick represents a
time-stamped record of a transaction on the exchange. This record includes
the price and volume of each trade. Financial markets generate a huge quantity
of tick data each day. An actively-traded share on a major exchange may
trade multiple times per minute. A median stock in the Russell 3000 produces
approximately 500,000 ticks per year, whereas a heavily traded share like
Microsoft may generate 20 million ticks annually. Traders can see this data in
real time and can use it in making trading decisions.

15.1 Background

High-frequency financial data, such as the data tackled in this case, is data
which is sampled at small time intervals (at a high frequency) during the
trading day. Therefore, high-frequency financial data can contain the price
and volume history of a financial asset for every second of trading during
the day. Substantial volumes of trading in financial markets are intra-day.
In the case of foreign exchange markets, Dacorogna et al. [47] estimate that
approximately 90% of all trading is accounted for by intra-day traders.

Most academic studies of the utility of technical analysis use low-frequency
time-series, typically end-of-day price and volume information (a notable ex-
ception is Svangard et al. [209] who used market information sampled at a
one-minute interval). There are approximately 250 trading days per year, so
using a daily sampling frame results in a significant reduction in the density
of data. For example, using end-of-day data for Microsoft implies that each
(daily) data point represents on average 80,000 transactions.

204 15 Intra-day Trading Using Grammatical Evolution

Studies of technical analysis using daily price data provide limited in-
sight into the possible utility of technical analysis for intra-day trading. If
the intention is to construct a trading system that will hold positions for a
short-horizon (intra-day) then using daily price data to construct the system
will not suffice. Rather the system will need to be constructed using tick data,
or a high-frequency time-series sampled from this data.

The use of high-frequency data allows the collection of large quantities
of data for trading system construction over relatively short time periods.
This provides scope for the rapid construction, testing and live-trading of a
system. Over short time spans the fundamental assumption of any trading
system, that the present resembles the past, is more likely to be tenable.
Real-time tick-by-tick data feeds are easily and inexpensively available from
several data vendors.

15.2 Methodology

The trading systems in this case study were developed using high-frequency
price data for Ford and IBM drawn from the period 2/1/02 to 15/4/02, and
were tested out of sample using data from 16/4/02 to 2/7/02. Data is sampled
at five-minute intervals from these periods, producing 9,828 individual data
points for each stock. Each data point included the opening and closing prices,
the high and low price and volume, for each five-minute interval. Figure 15.1
provides a high-low close (HLC) chart for Ford, for the first 50 minutes of
trading on 2/1/2002 (split into ten 5 minute trading intervals). The top and
bottom of each bar represents the high and low price for each interval, and
the horizontal tick represents the closing price. The average of the open and
closing price of each interval is used as the input data for the trading system.
The price data is normalised into the range [0,1].

Characteristics of Tick-by-Tick Data

It is well known that tick-by-tick data exhibits intra-day seasonalities. In the
case of equity and bond markets which are open for fixed trading hours, activ-
ity measures display a distorted U shape over the trading day [8]. Typically,
intra-tick duration (the time between one tick and the next) is lowest in the
opening minutes of daily trading. As an example of the volume of trading
which can occur at the start of a trading day, a total of 3,352 trades were
recorded for Microsoft in the first 180 seconds of trading (9.30-9.32am) on
20/5/02. In contrast, the average number of ticks per 180 seconds of trad-
ing over the entire year was approximately 620. Intra-tick duration is highest
during lunch hour and decreases again towards the end of the trading day.
Figure 15.2 provides a graph of the average trading volume of Ford and IBM
for each 5 minute interval during the trading day, for the period January-
July 2002. A practical consequence is that sampled data from a tick-by-tick

15.2 Methodology 205

14.5

14.6

14.7

14.8

14.9

15

15.1

0
9
:
3
5

0
9
:
4
0

0
9
:
4
5

0
9
:
5
0

0
9
:
5
5

1
0
:
0
0

1
0
:
0
5

1
0
:
1
0

1
0
:
1
5

1
0
:
2
0

Time

P
r
i
c
e

Fig. 15.1. High-low close chart of Ford, for first ten, five-minute intervals of trading,
on 1st February 2002 (x-axis is denominated in dollars)

series may not contain homogeneous information. Consider a sampled price
at 9.40 am versus a sampled price at 1.20 pm. It is likely that the price at
9.40 am is representative of a number of trades that took place in the active
early-morning session. The later sampled price may reflect far fewer trades.

In addition to the predictable pattern of market trading intra-day, many
markets also display a tendency to reach their high and low points during
either early or late trading during the day. Prices tend to be most volatile
in early and late trading, due to the queuing of pre-opening trades in the
morning, and the activities of traders who do/do not want to carry inventory
of a stock overnight in the case of late trading.

0

100000

200000

300000

400000

09
:3

5

10
:3

0

11
:2

5

12
:2

0

13
:1

5

14
:1

0

15
:0

5

16
:0

0

Time

Volume

0
100000
200000
300000
400000

0
9

:3
5

1
0

:3
0

1
1

:2
5

1
2

:2
0

1
3

:1
5

1
4

:1
0

1
5

:0
5

1
6

:0
0

Time

Volume

Fig. 15.2. Average intra-day trading volume for Ford (left) and IBM (right) at 5
minute intervals, Jan-July 2002

In developing our trading system, to overcome these periods of volatility
we do not trade in either the first or last half hour each day. All open positions

206 15 Intra-day Trading Using Grammatical Evolution

are closed out before the last half hour of each day, resulting in the system
not holding any positions overnight. This reduces the price risk to which the
system is exposed, as new information that is brought to the market pre-
opening the next day, could affect the next morning’s opening price causing it
to gap upwards or downwards from the closing price of the previous evening
(Fig. 15.3).

48

49

50

51

52

53

54

55

56

57

3
0
/
1
2
/
0
2

6
/
1
/
0
3

1
3
/
1
/
0
3

2
0
/
1
/
0
3

2
7
/
1
/
0
3

P
r
i
c
e

Intra-day
gap

Fig. 15.3. Example of intra-day gap for Microsoft (16-17th January 2003) (x-axis
is denominated in dollars)

15.2.1 Trading System

After the initial half-hour period each day, the trading system considers
whether or not to trade at the end of every 10 minute interval during each
day. At each possible trading time the system calculates its prediction. The
prediction is calculated by evaluating the evolved technical indicator rule.
The trading rule returns a value in the range 0 to 1, and postprocesses this
value, as in the last case study, into one of three trading signals Buy, Sell or
Do-Nothing.

If the prediction is to go long the system will buy $1,000 of stock, if it is
to go short the system will sell $1,000 of stock. When the trade is closed out a
profit or loss is evaluated, and a cumulative total of the profits or losses of the
trading rule is maintained. The maximum amount that the system can have
invested at any one time is $10,000. If the total trading capital is invested at
any time, no further positions are open until preexisting positions are closed.

15.2 Methodology 207

Exit Strategies

Once a trading position is opened, a variety of exit strategies could be em-
ployed to decide when this position is to be closed out. In order to examine
the significance of the choice of exit strategy on the results obtained by a
trading system, this study evolves trading systems which use three different
exit strategies:

• standard close,
• extended close, and
• stop-loss, take-profit close.

The standard and extended close strategies are examined for both stocks, and
the stop-loss, take-profit close strategy is examined for Ford. In the standard
close, the evolved systems automatically close out all trading positions 30
minutes after they are opened. In the extended close, the system rechecks after
30 minutes whether the prediction is unchanged from the initial prediction,
and if it is the trade is extended for a further 30 minutes. In the stop-loss,
take-profit close, the position is initially held for 30 minutes, and thereafter,
if the position generates a loss of 0.1% it is closed immediately, and profit is
automatically taken on any position which makes a profit of 0.8% by closing
the position once the take-profit trigger is hit. If the position is still open 30
minutes from the end of the trading day it is closed out.

15.2.2 GE System Setup

The grammar adopted in the GE system is defined as follows:

<code> ::= p = <expr> ;

<expr> ::= <fopbi>(<expr>,<expr>) | <fopun>(<expr>)

| <expr><matbi><expr> | <expr><relbi><expr>
| <var>

<fopbi> ::= f_and | f_or

<fopun> ::= f_not

<matbi> ::= + | - | *

<relbi> ::= > | < | >= | <=

<var> ::= <int> | day | ma(<int>,day)

| momentum(<int>,day) | trb(<int>,day)

<int> ::= 1 | 2 | 3 | 4 | 5 | 10

In addition to the technical indicators the grammar also allows the use of the
binary operators f_and, f_or, the standard arithmetic operators, the unary
operator f_not, and the current days index value day. The operations f_and,
f_or, and f_not return the minimum and maximum of the arguments, and
1-the argument, respectively.

208 15 Intra-day Trading Using Grammatical Evolution

The GA algorithm in the GE system uses roulette selection, a steady-
state replacement mechanism such that two parents produce two children,
the best of which replaces the worst individual in the current population, if
the child has greater fitness. The standard genetic operators of bit mutation
(probability of 0.01) and crossover (probability of 0.9) are adopted. At the end
of each run the best individual is stored, along with that individual’s trading
rule, fitness and drawdown.

15.3 Results

The results from our experiments are now provided for both the training
period (Table 15.1) and the test period (Table 15.2). Neither stock displayed
a distinct monotonic price trend during the train or test periods (see Fig. 15.3
for a graph of Ford’s share price over the train/test period).

Table 15.1. Trading profit (maximum drawdown) in $ during the training period

Ford IBM

Standard Close 1,280.73 (1.02) 1,221.67 (12.08)
Extended Close 2,436.67 (29.52) 2,431.51 (68.29)
Stop-Loss, Take-Profit Close 1,965.07 (1.01) n/a
Buy-and-Hold 96.92 -2,890.28

Table 15.2. Trading profit (maximum drawdown) in $ during the test (out-of-
sample) period

Ford IBM

Standard Close 823.86 (14.47) 892.50 (20.42)
Extended Close 1,257.71 (61.96) 1,761.33 (2.21)
Stop-Loss, Take-Profit Close 1,291.10 (14.47) n/a
Buy-and-Hold 286.55 -1,905.94

In both the training and test periods, the extended close exit strategy notably
outperforms the standard close strategy, without exhibiting clearly higher
drawdowns. This result highlights the impact that the choice of exit strategy
can have on the results produced by a trading system. In each case, the trading
systems were developed on the same data, using the same GE algorithm, with
only the exit strategy differing. In considering the utility of the stop-loss, take-
profit exit strategy (which has only been examined for Ford), it is noted that
it outperforms the standard close exit mechanism in both the training and

15.3 Results 209

 14

 14.5

 15

 15.5

 16

 16.5

 17

 17.5

 0 10 20 30 40 50 60 70 80

C
lo

se

Day

Ford Train Data

 15.5

 16

 16.5

 17

 17.5

 18

 18.5

 0 10 20 30 40 50 60

C
lo

se

Day

Ford Test Data

Fig. 15.4. Ford price during train and test periods

test periods. It does not clearly dominate the extended close exit strategy,
underperforming in the training period, and outperforming in the test period.
Table 15.3 provides information on the percentage of profitable trades under
each exit strategy for the test period. Under the standard close approximately
55% of trades are winning trades, but this percentage drops under the other
two strategies, notably under the stop-loss, take-profit strategy. Despite the
lower percentage success under the latter two strategies, they substantially
outperform the standard close strategy in terms of dollar profit generated.
This illustrates the danger in using a simple metric such as percentage of
successful trades as a fitness measure in evolving trading systems. In the case
of the stop-loss, take-profit strategy, the low percentage of profitable trades
is explained by the tight take-loss criterion, where positions losing more than
0.1% were closed out. This has the effect of closing out positions which have
incurred a small loss, increasing the percentage of trades closed at a loss, but
simultaneously reducing the price risk of the trading system. Although not
undertaken in this example, the trigger points for the stop-loss and take-profit
could themselves be evolved as part of the trading system.

210 15 Intra-day Trading Using Grammatical Evolution

Table 15.3. Percentage of profitable trades in test period

Ford IBM

Standard Close 55 54
Extended Close 45 55
Stop-Loss, Take-Profit Close 32 n/a

15.4 Discussion

In this case, GE was applied for the purposes of evolving intra-day trading
systems for equity markets. GE was shown to evolve profitable trading rules
for both training and test periods, and the evolved trading rules did not
exhibit large drawdowns. The significance of the choice of exit strategy for
the profitability of the evolved trading systems was also illustrated.

A large number of extensions of the methodology are possible. In evolv-
ing the trading systems, we ignored trading costs and slippage, and did not
explicitly incorporate a risk penalty into the fitness function. There is also
scope to develop more sophisticated money-management strategies, as seen in
Chap. 14.

16

Automatic Generation of Foreign Exchange

Trading Rules

The prediction of foreign exchange rates is a difficult task. Many intercon-
nected political and macroeconomic factors (including inflation rates, interest
rates, money supply and balance of payments) impact on the fundamental
value of a currency, and markets will respond as expectations as to future
values of these items alter. Foreign exchange rates are a function of current
levels of demand and supply, and technical analysis can also be applied to
these markets. This case illustrates the application of grammatical evolution
to uncover a series of useful technical trading rules which can be used to
trade spot foreign exchange markets (transactions in which two currencies are
immediately exchanged).

International foreign exchange markets are dominated by a small num-
ber of heavily traded currency pairings. Approximately 89% of all foreign
currency transactions involve the US Dollar [20]. Prior to the introduction
of the Euro, the most-traded currency pairings were the US Dollar/DM, US
Dollar/Yen and US Dollar/Sterling, accounting for 20%, 18% and 8% of total
daily average volume in currency markets during 1998 [19]. This case develops
trading systems for each of these currency pairs using daily US-DM, US-Stg
and US-Yen exchange rates for the period 23/10/92 to 13/10/97.

16.1 Background

Foreign exchange markets are the most active of all financial markets with
average daily trading volumes in traditional (non-electronic broker) foreign
exchange markets estimated at $1.9 trillion in 2004 [20]. Average daily trading
on spot markets exceeds $621 billion. Unlike equity markets, foreign exchange
markets are not exchange-traded, rather trades are bilateral agreements be-
tween individual parties who are not required to register these trades with
any central agency. Also, unlike equity markets, there can never be a bear
market for foreign exchange. As currencies are valued relative to one another,
as one currency goes down another must go up.

212 16 Automatic Generation of Foreign Exchange Trading Rules

Although the precise scale of speculative trading on spot markets is
unknown, the bulk of transactions are not represented by world trade in
goods and services [85]. Only about 17% of the trading is driven by non-
dealer/financial institution trading [20]. Therefore, it is plausible to assume
that the scale of speculative trading is substantial. Speculative foreign cur-
rency trading implies the existence of predictive models in the mind of in-
vestors. These models could integrate many different forms of information.
This case study focuses on a subset of this information, the information con-
tained in the historical time-series of exchange rates.

Use of Technical Analysis in the Forex Market

In a study conducted on behalf of the Bank of England [211], it was found
that approximately 90% of financial institutions dealing in foreign exchange
in London (the largest foreign exchange market in the world, with 31% of
total trading volume [20]) placed some weight on information obtained from
technical analysis in making trading decisions. Lui and Mole [145] reported
similar findings among foreign exchange dealers in Hong Kong. Additional
support for a technical analysis argument is found in Osler [179], where evi-
dence of clustering of currency stop-loss and take-profit orders is noted. Clus-
ters of take-profit orders were found at exchange rates characterised by round
numbers (ending in 00) with stop-loss orders clustering just beyond round
numbers. The effect of clustering of these orders is that trends in exchange
rates will tend to reverse at predictable support and resistance levels, and
trends tend to accelerate once these levels are breached.

16.2 Methodology

The methodology adopted is based on that in [30]. Daily closing exchange rate
data is drawn from the London market for the period 23/10/92 to 13/10/97.
The training data set was comprised of the first 799 trading days of the data
set. The developed models are tested using an out-of-sample dataset of 548
trading days. The out-of-sample data is divided into two hold-out samples
(274*2) to allow comparison of the hold-out results across different market
conditions. As in the last case study, the rules evolved by GE are used to
generate one of three trading signals for each day of the training and test
periods. The possible signals are Buy, Sell or Do-Nothing.

Trading System

If a buy signal is indicated on a given day, a fixed sum investment is made
in the foreign currency using borrowed funds. This position is automatically
closed at the end of a five-day trading period. On the production of a sell

16.2 Methodology 213

signal, a fixed sum of the foreign currency is sold, and again this position is
closed out after a five-day period.

Consider a daily observed exchange rate series St where t = 1, 2, . . . n. The
total return (measured as a percentage) generated by the developed trading
system is a combination of its trading return net of trading costs and an
interest differential. We define the five-day (%) trading return (before trading

costs) for a long position as (St

St+5
− 1) and as −1[1 − (St+5

St
)] for a short

position.
In this trading strategy, the home currency is the US dollar. When a long

position is taken, the foreign currency is purchased and the return equals the
trading return plus the interest earned in the foreign currency, less the cost
of the home funds borrowed to invest in the foreign currency. When a short
signal is produced by the trading system, the foreign currency is borrowed, at
a cost of the foreign interest rate, and is invested in US dollars for the trading
period. The dollar interest rate is earned on these funds. A trading cost c of
0.025% and a slippage allowance of 0.01% in each (single) direction is included
[139].

Incorporating Risk into the Fitness Function

To encourage the evolution of a trading system with good risk to return char-
acteristics, we penalise trading systems leading to volatile patterns of returns.
The risk of catastrophic loss is reduced by incorporating a measure of the
system’s drawdown (the maximum accumulated loss produced by the trading
system during the training period) into the fitness function. Therefore, the
function is defined as:

Fitness = Return − (Maximum drawdown) (16.1)

Many variants on this rule exist, and the characteristics of the final trading
system will critically depend on the choice of fitness function. An alternative
function could be:

Fitness =
Return

Maximum drawdown
∗ Win ratio (16.2)

In this case, the development of the trading system is biased towards winning
trades, potentially leading to a system which trades infrequently but which
tends to win the trades it makes.

GE System Setup

The grammar adopted in this study is as follows:

<code> ::= p = <expr> ;

<expr> ::= <fopbi> (<expr> , <expr>)
| <fopun> (<expr>)

214 16 Automatic Generation of Foreign Exchange Trading Rules

| <expr> <matbi> <expr>

| <expr> <relbi> <expr>
| <var>

<fopbi> ::= f_and
| f_or

<fopun> ::= f_not

<matbi> ::= + | - | *

<relbi> ::= > | < | >= |<=

<var> ::= <int>
| ma(<int> , day)

| day
| momentum(<int> , day)
| trb(<int> , day)

<int> ::= 1 | 2 | 3 | 4 | 5 | 10

The technical indicators adopted in this case are the moving average, momen-
tum and trading range breakout where the relevant periods and combination
of indicators used are to be determined by evolution. Apart from the raw com-
ponents of the technical indicators adopted (average, moving average, lag, each
of which takes a real-valued argument representing the chosen time-window)
the BNF grammar also allows the use of standard arithmetic operators (+, -, *
and inequality operators) and the binary operators f and, f or, and the unary
operator f not. The current day’s price is also provided as a model input.

Roulette selection with a steady-state replacement mechanism is used,
such that two parents produce two children, the best of which replaces the
worst individual in the current population if the child has greater fitness. The
standard genetic operators of bit mutation (probability of 0.01) and crossover
(probability of 0.9) are adopted as is a duplication operator (probability of
0.01) that duplicates a random codon and inserts this into the penultimate
codon position on the genome. A series of technical indicators, are predefined
as are a series of mathematical operators, each of which is made available for
inclusion in candidate solutions with their incorporation into the grammar
input into GE, as described above.

16.3 Results

A plot of the exchange rates of the DM, Stg and the Yen against the US$ over
the training and test periods can be seen in Fig. 16.1. Examining the three
exchange rates over the training and test periods does not reveal obvious
monotonic trends. Therefore, the three exchange rates should provide a good
test-bed for the GE models.

Thirty independent runs of the GE algorithm were conducted, each with
a population size of 500 individuals and an evolutionary period of 50 genera-
tions. To assess the quality of the results obtained they are compared against
a buy-and-hold benchmark. The buy-and-hold benchmark is determined by

16.3 Results 215

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0 200 400 600 800 1000 1200 1400

R
at

e

Time

Foreign Exchange Rate

USD/DEM

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0 200 400 600 800 1000 1200 1400

R
at

e

Time

Foreign Exchange Rate

USD/GBP

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 130

 0 200 400 600 800 1000 1200 1400

R
at

e

Time

Foreign Exchange Rate

USD/JPY

Fig. 16.1. Exchange rates for US$-DM, US$-Stg and US$-Yen over the training
and test periods

comparing the return obtained from investing $5,000 in the foreign currency,
net of the interest rate differential, during each training and out-of-sample pe-
riod. A plot of the best individuals and mean of the best individuals’ fitness
at each generation over the 30 runs can be seen in Fig. 16.2.

216 16 Automatic Generation of Foreign Exchange Trading Rules

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40 45 50

Fi
tn

es
s

Generation

Grammatical Evolution - ForEx - US/DM

best
avg

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35 40 45 50

Fi
tn

es
s

Generation

Grammatical Evolution - ForEx - US/STG

best
avg

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40 45 50

Fi
tn

es
s

Generation

Grammatical Evolution - ForEx - US/Yen

best
avg

Fig. 16.2. In-sample fitness of overall best individual and mean of best individuals
over the 30 runs, plotted for each currency pair

16.3.1 US-STG

Table 16.1 provides a comparison of the performance (a percentage return met-
ric, 0.01 = 1%) of the best evolved trading rules against that of the benchmark
investment strategy. The evolved rules outperform the benchmark strategy on
the training and both test data sets.

16.3 Results 217

Table 16.1. Results for the best (mean) evolved trading rules over the 30 runs
compared to the benchmark buy-and-hold strategy on the US-STG dataset

Trading Period Evolved Rule set Buy-and-Hold

Training 1.75642 (1.5123) -0.055855
Test 1 0.343709 (0.26103) -0.094723
Test 2 0.500649 (0.47824) -0.041456

16.3.2 US-Yen

Table 16.2 provides a comparison of the performance of the best evolved
trading rules against that of the benchmark investment strategy. As for the
US-STG exchange rate, the rules evolved by GE outperform the benchmark
strategy on each of the datasets.

Table 16.2. Results for the best (mean) evolved trading rules over the 30 runs
compared to the benchmark buy-and-hold strategy on the US-Yen dataset

Trading Period Evolved Rule set Buy-and-Hold

Training 2.3803 (1.9374) -0.080146
Test 1 0.342609 (0.066474) 0.133476
Test 2 0.195778 (0.32521) 0.090996

16.3.3 US-DM

Table 16.3 provides a comparison of the performance (a percentage return met-
ric, 0.01 = 1%) of the best evolved trading rules against that of the benchmark
investment strategy. In this case the evolved rules outperform the benchmark
strategy on the training and second test data sets, and manage to generate
positive returns on the other test data set.

Table 16.3. Results for the best (mean) evolved trading rules over the 30 runs
compared to the benchmark buy-and-hold strategy on the US-DM dataset

Trading Period Evolved Rule set Buy-and-Hold

Training 2.02357 (1.865) -0.112199
Test 1 0.017998 (0.017998) 0.068231
Test 2 0.302671 (0.302671) 0.153231

218 16 Automatic Generation of Foreign Exchange Trading Rules

16.4 Discussion

A total of 799 days of data were used to train the models, which were then
tested on a further 548 days of out-of-sample data. Despite the lengthy out-of-
sample period, the evolved trading rules generated positive returns on all the
hold-out samples, after allowance for trading, slippage and net interest costs.
In five of the six hold-out periods, the best evolved rule outperforms the
benchmark buy-and-hold strategy. The mean (over all 30 runs) best evolved
rule outperforms the benchmark in four of the six hold-out periods. It is
also notable that the out-of-sample results appear robust over out-of-sample
periods, and do not indicate that the performance of the trading system is
declining.

17

Corporate Failure Prediction Using

Grammatical Evolution

This case illustrates how grammatical evolution can be used to uncover a
series of useful rules which can assist in the prediction of corporate failure,
using information drawn from financial statements.

Corporate failure is a natural component of the market economy, facili-
tating the recycling of financial, human and physical resources into more pro-
ductive organisations [67, 192]. Nonetheless, corporate bankruptcy can impose
significant private costs on many parties including shareholders, providers of
debt finance, employees, suppliers, customers, managers and auditors. All of
these stakeholders have an interest in being able to identify whether a firm
is on a trajectory which is tending towards corporate failure. Early identi-
fication of such a trajectory could facilitate successful intervention, to avert
disaster. Corporate failure can arise for many reasons. It may result from a
single catastrophic event or it may be the terminal point of a lengthy pro-
cess of decline. Under the second perspective, corporate failure is a process
which is rooted in management defects, resulting in poor decisions, leading to
financial deterioration and finally corporate collapse [4, 104, 151].

Most attempts to predict corporate failure implicitly assume that man-
agement decisions critically impact on firm performance [11]. Although man-
agement decisions are not directly observable, their consequent effect on the
financial health of the firm can be observed through their impact on the
firm’s financial ratios. Typically when constructing corporate failure predic-
tion models, explanatory variables are drawn from the financial statements of
the firm, from financial markets, general macroeconomic variables, and non-
financial, firm-specific information). In this case study, attention is restricted
to information drawn from financial statements.

There are a number of reasons to suppose that GE can prove fruitful in
the prediction of corporate failure. The problem domain is characterised by
a lack of a strong theoretical framework, with many plausible, competing ex-
planatory variables. The selection of quality explanatory variables and model
form represents a high-dimensional combinatorial problem, giving rise to po-
tential for GE. Another useful feature of a GE approach is that it produces

220 17 Corporate Failure Prediction Using Grammatical Evolution

human-readable rules that have the potential to enhance understanding of the
problem domain.

17.1 Background

Research into the prediction of corporate failure has a long history [78, 111,
199]. Early statistical studies such as Beaver [17] adopted a univariate method-
ology, identifying which accounting ratios had greatest classification accuracy
in separating failing and non-failing firms. Although this approach did demon-
strate classification power, it suffers from the shortcoming that a single weak
financial ratio may be offset (or exacerbated) by the strength (or weakness) of
other financial ratios. Altman [3] addressed this issue by developing a multi-
variate LDA model and this was found to improve the classification accuracy
of the developed models. Altman’s discriminant function was:

Z = 0.012X1 + 0.014X2 + 0.033X3 + 0.006X4 + 0.999X5 (17.1)

where:
X1 = working capital to total assets

X2 = retained earnings to total assets

X3 = earnings before interest and taxes to total assets

X4 = market value of equity to book value of total debt

X5 = sales to total assets

Other statistical methodologies which have been applied include logit and
probit regression models [89, 165, 227], neural networks [193, 195, 219] and
genetic algorithms [135, 217], and NN-GA hybrids [28].

17.1.1 Definition of Corporate Failure

No unique definition of corporate failure exists [4]. Possible definitions range
from failure to earn an economic rate of return on invested capital, to legal
bankruptcy followed by liquidation of the firm’s assets. Typically, financial
failure occurs when a firm incurs liabilities which cannot be repaid from liq-
uid financial resources. However, this may represent the end of a period of
financial decline, characterised by a series of losses and reducing liquidity.
Altman [3] suggested that the primary cause of corporate failure is the failure
of management to recognise the symptoms of decline in time to take reme-
dial action. Any attempt to uniquely define corporate failure is likely to prove
problematic. While few publicly quoted companies fail in any given year (Mor-
ris [158] suggests that the rate is below 2% in the UK, Zmijewski [227] reports
that this rate is less than 0.75% in the US), poorer performers are liable to

17.1 Background 221

acquisition by more successful firms. Thus, two firms may show a similar fi-
nancial trajectory towards failure, but one firm may be acquired and ‘turned
around’ whilst the other may fail.

The definition of corporate failure adopted in this case study is the court
filing of a firm under Chapter 7 or Chapter 11 of the US bankruptcy code. The
selection of this definition provides an objective benchmark as the occurrence
(and timing) of either of these events can be determined through examination
of regulatory filings. Chapter 7 of the US bankruptcy code covers corporate
liquidations, and Chapter 11 covers corporate reorganisations which usually
follow a period of financial distress. Under Chapter 11, management is re-
quired to file a reorganisation plan in bankruptcy court and seek approval
for this plan. On filing the bankruptcy petition, the firm becomes a debtor in
possession. Management continues to run the day-to-day business operations
but all significant business decisions must be approved by a bankruptcy court.
Even if creditors or stockholders vote to reject the proposed reorganisation
plan, the court may still confirm the plan (known as a cramdown) if it finds
that the plan treats creditors and stockholders fairly. In most cases, Chap-
ter 11 reorganisations involve significant financial losses for both shareholders
[188] and creditors [77] of the distressed firm. Moulton and Thomas [159],
in a study of the outcomes of Chapter 11 filings, found that there were few
successful reorganisations, despite a perception that some management teams
were using Chapter 11 filings as a deliberate strategy for dealing with certain
firm specific events such as onerous labor contracts or product-liability claims.

17.1.2 Explanatory Variables

Five groupings of explanatory variables, drawn from financial statements,
are given prominence in prior literature: liquidity, debt, profitability, activ-
ity/efficiency, and size [6]. Liquidity refers to the availability of cash resources
to meet short-term cash requirements. Debt measures focus on the relative
mix of funding provided by shareholders and lenders. Profitability considers
the rate of return generated by a firm in relation to its size, as measured by
sales revenue and/or asset base. Activity measures consider the operational
efficiency of the firm in collecting cash, managing stocks and controlling its
production or service process. Firm size provides information on both the sales
revenue and asset scale of the firm and acts as a proxy metric on firm history
[140]. The groupings of potential explanatory variables can be represented by
a wide range of individual financial ratios, each with slightly differing informa-
tion content. The groupings are interconnected, as weak (or strong) financial
performance in one area will impact on another. For example, a firm with a
high level of debt may have lower profitability due to high interest costs.

Whatever modelling methodology is applied in order to predict corporate
distress, the initial problem is to select a quality set of model inputs from a
wide array of possible financial ratios and then to combine these ratios using
suitable weightings in order to construct a high-quality classifier. Given the

222 17 Corporate Failure Prediction Using Grammatical Evolution

large search space, of both inputs and model form, an evolutionary algorithm
such as GE has particular promise.

17.2 Methodology

A similar methodology to [32] is adopted. A sample of 178 (89 failed and 89
non-failed) publicly quoted US firms was drawn from the period 1991 to 2000
in order to train and test the model. Only firms with sales exceeding $1M,
which had existed for at least three years prior to entry into Chapter 7 or
Chapter 11 and which were outside the financial sector were considered for
inclusion in the sample.1 Twenty-two potential explanatory variables, were
collected for each firm for the three years prior to entry into Chapter 7 or
Chapter 11. The date of entry into Chapter 7 or Chapter 11 was determined
by examining regulatory filings for each firm. For every failing firm, a matched
non-failing firm was selected. Failed and non-failed firms were matched both
by industry sector and size (sales revenue three years prior to failure). The set
of 178 matched firms was randomly divided into model building (128 firms)
and out-of-sample (50 firms) datasets. The dependent variable is binary (0,1),
representing either a non-failed or a failed firm.

Choosing the Explanatory Variables

The choice of explanatory variables is hindered by the lack of a clear the-
oretical framework which explains corporate failure [11, 215, 219]. Most
empirical work on corporate failure adopts an ad hoc approach to vari-
able selection. Prior to the selection of the potential explanatory variables
for inclusion in this study, a total of ten previous studies were examined
[3, 7, 12, 17, 48, 118, 157, 165, 193, 208]. These studies employed a total of
58 distinct ratios. A subset of 22 of the most commonly used financial ratios
was selected for this study. The selected ratios were:

i. EBIT/Sales
ii. EBITDA/Sales
iii. EBIT/Total Assets
iv. Gross Profit/Sales
v. Net Income/Total Assets
vi. Net Income/Sales
vii. Return on Assets
viii. Return on Equity
ix. Return on Investment
x. Cash/Sales
xi. Sales/Total Assets
xii. Inventory/Cost of Goods Sold

1Financial firms were excluded on grounds of lack of comparability of their fi-
nancial ratios with other firms in the sample.

17.2 Methodology 223

xiii. Inventory/Working Capital
xiv. Fixed Assets/Total Assets
xv. Retained Earnings/Total Assets
xvi. Cash from Operators/Sales
xvii. Cash from Operations/Total Liabilities
xviii. Working Capital/Total Assets
xix. Quick Assets/Total Assets
xx. Total Liabilities/Total Assets
xxi. Leverage
xxii. EBIT/Interest

17.2.1 GE System Setup

The classification accuracy of the developed models is assessed based on the
overall classification accuracy arising in both the model-building and out-of-
sample datasets (only classification accuracy on the model-building data was
used in the construction of the models). For simplicity, the cost of each type
of classification error is assumed to be symmetric. The fitness function could
be easily altered to bias the model development process to minimise a specific
type of classification error if required.

In general, the construction of classifier systems consists of two compo-
nents, the determination of a valuation rule which is applied to each obser-
vation and the determination of a cut-off value. The grammar adopted in
this study is as follows, and its output is interpreted (postprocessed) using
a fixed 0.5 cut-off value to produce a classification (values equal to or above
0.5 are interpreted as a failing company, values below 0.5 are interpreted as a
non-failing company).

<lc> ::= output = <expr> ;

<expr> :: (<expr>) + (<expr>)

| <coeff> * <var>

<var> ::= var1[index] | var2[index] | var3[index]

| var4[index] | var5[index] | var6[index]
| var7[index] | var8[index] | var9[index]

| var10[index] | var11[index] | var12[index]
| var13[index] | var14[index] | var15[index]

| var16[index] | var17[index] | var18[index]
| var19[index] | var20[index] | var21[index]
| var22[index]

<coeff> ::= (<coeff>) <op> (<coeff>)

| <float>

<op> ::= + | - | *

<float> ::= 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4

| 3 | -3 | 2 | -2 | 1 | -1 | .1 | -.1

The above grammar generates classifiers of the form:

224 17 Corporate Failure Prediction Using Grammatical Evolution

output = (<some expression>*varX) + (<some expression>*varY) + ...

However, any combination and number of the 22 explanatory variables can
be exploited by an evolved classifier. Due to the way the grammar is defined,
the generated rules have a linear form. Hence this case also provides an il-
lustration of how GE can be used to generate a linear model. The grammar
definition could be easily altered to allow the construction of non-linear models
by including non-linear functions in the grammar.

17.2.2 LDA Method

The results obtained from the GE classifier are benchmarked against results
arising from a Linear discriminant analysis (LDA) methodology. LDA derives
a linear combination of characteristics (variables) which best discriminates
between a series of predefined classes. The discriminant function may be ex-
pressed as follows for the two-class case: Z = V1X1 + V2X2 + ... + VnXn,
where V1, V2, ..., Vn are the discriminant coefficients and X1, X2, ..., Xn are
the independent variables. The function transforms a data vector into a single
discriminant value which is then used to classify the observation.

The LDA model rests on a number of assumptions. To ensure the tech-
nique can produce an optimal classification rule, the data for each classification
group must be drawn from a multivariate normal population and the covari-
ance matrices must be homogeneous [147]. These assumptions do not generally
hold for financial ratio data. Despite this, the technique has produced good
results in the prediction of corporate distress using such data.

17.3 Results

Three series of models were constructed using explanatory variables drawn
from one, two and three years (T1, T2 and T3) prior to failure. For each set
of models, 30 runs were conducted using population sizes of 500, running for
100 generations, adopting one-point crossover at a probability of 0.9, and bit
mutation at 0.01, along with roulette selection and a steady-state replacement
strategy. A plot of the mean best and mean average fitness at each generation
over the 30 runs can be seen in Fig. 17.1.

The classification results of the evolved models show promise. Despite
drawing a sample from a variety of industrial sectors, the models demonstrate
a high classification accuracy in and out-of-sample, which degrades gracefully
rather than suddenly in the third year prior to failure. The best individuals
evolved for each period are reported in Table 17.1. Calculation of Press’s
Q statistic [103] for each of these models rejects a null hypothesis, at the
5% level, that the out-of-sample classification accuracies are not significantly
better than chance. In sample it can be seen that the classification performance
of the models degrades as we move out each year. It is interesting to note that

17.3 Results 225

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 F
itn

es
s

Generation

Grammatical Evolution - Corporate Failure

T1
T2
T3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45 50

B
es

t F
itn

es
s

Generation

Grammatical Evolution - Corporate Failure

T1
T2
T3

Fig. 17.1. In-sample fitness of overall best individual and mean of best individuals
over the 30 runs

out of sample there is no performance difference between the evolved models
in periods T1 and T2, both giving 80% correct classifications.

17.3.1 Form of the Evolved Classifiers

The best classifiers evolved for each period are:
One Year Prior to Failure:

Output = -3*Financial leverage -5*Return on Assets

+3*Inventory/Working Capital-20*Retained Earnings/Total Assets

+4*Total Liabilities/Total Assets

Two Years Prior to Failure:

Output = -2*Return on Assets+10*Sales/Total Assets-10*Fixed

Assets/Total Assets-2*varEBIT/Interest

Three Years Prior to Failure:

Output= -4*Return on Assets+20*Sales/ Total Assets-72.9*Cash from

Operations/Sales-10*EBIT/Interest

Although the evolved models were free to select from 22 potential explanatory
variables, it is notable that each model only employed a small subset of these.

226 17 Corporate Failure Prediction Using Grammatical Evolution

Table 17.1. The classification accuracies reported for each of the three years prior
to failure

Years Prior to In-Sample Out-Of-Sample
Failure Accuracy Accuracy

1 85.9% 80%
2 82.8% 80%
3 75.8% 70%

This lends support to the proposition that many financial ratios have similar
information content and that classification accuracy is not enhanced through
the construction of models with a large number of these ratios. It is also no-
table that each model has (approximately) included one variable drawn from
the four main categories of explanatory variables suggested in the corporate
failure literature.

The risk factors suggested by each model differ somewhat and contain
plausible findings. Examining the best classifier evolved for T1 suggests
that risk factors include low return on assets, low retained earnings and
a high ratio of total liabilities to total assets, which concords with finan-
cial intuition. Less obviously, a high ratio of inventory to net liquid assets
(inventory+receivables+cash-payables) is also a risk factor, possibly resulting
from depletion of cash or build-up of inventories as failure approaches. Risk
factors for firms at T2 include low return on assets and a low ratio of earnings
to interest costs. Less intuitive risk factors indicated are a low ratio of fixed
assets to total assets and a high ratio of sales to total assets. The former could
indicate firms with a lower safety cushion of saleable resources which could be
sold to stave off collapse, the latter could be serving as a proxy variable for
firms with rapid sales growth. Over-rapid sales growth can be a danger signal,
indicating that management resources are being spread too thinly. Finally,
risk factors indicated for firms at T3 include low return on assets, a low ratio
of profit to interest charge, a low level of cash generated from operations and,
as for T2, a high ratio of sales to total assets.

Although the models for each year are evolved separately, the general
form of each model appears consistent with the hypothesis that there is a
financial trajectory towards failure. Low profits and high interest payments
as a percentage of profits in periods T3 and T2 indicate a firm in financial
difficulties, with an erosion of the safety cushion provided by high levels of
(saleable) fixed assets indicated in the risk factors at T2. The final year prior
to failure sees additional risk factors indicated by high levels of debt and
reducing cash balances/inventory build-up.

17.4 Discussion

GE successfully evolved useful rules for prediction of corporate failure with
a performance equivalent to that reported in prior studies. In assessing the

17.4 Discussion 227

performance of the developed models, a number of caveats must be borne
in mind. The premise underlying this case study (and all empirical work on
corporate failure prediction) is that corporate failure is a process, commenc-
ing with poor management decisions, and that the trajectory of this process
can be tracked using accounting ratios. This approach does have inherent
limitations. It will not forecast corporate failure which results from a sudden
environmental event. It is also likely that the explanatory variables utilised
contain noise. Commentators [11, 200] have noted that managers may attempt
to utilise creative accounting practices to manage earnings and/or disguise
signs of distress.

This case could be extended in a number of directions. Non-financial quali-
tative explanatory variables or variables related to the firm’s share price could
be incorporated to further improve classification accuracy. One advantage of
this approach is that the model would incorporate more up-to-date data, as
information drawn from financial statements is, by definition, lagged informa-
tion.

Another interesting extension of the case would be to allow GE to evolve
a good set of ratios for potential inclusion in the classification model, from
the raw underlying financial information. To date, most attempts at develop-
ing models for the prediction of corporate failure have utilised a limited set
of financial ratios. These ratios are generally selected on an ad hoc basis by
the modeller due to the lack of a strong theoretical framework underlying the
failure prediction problem. Unfortunately, the number of ratios which can be
calculated from a set of financial statements is large. A set of financial state-
ments could contain several hundred numbers between the primary financial
statements and the detailed notes accompanying the primary statements, re-
sulting in many thousands of potential financial ratios. Most studies in the
corporate failure domain utilise similar financial ratios, circularly justifying
the choice of ratios by reference to earlier studies. This methodological ap-
proach leaves open the possibility that alternative, better, representations of
the financial data (ratios) exist.

To provide an example of the potential of this methodology, consider the
following three grammars, where var 1 to var 12 are pieces of raw financial
information such as sales or net profit before tax and interest:

Grammar 1

<lc> ::= output = <coeff> * ((<var>) / (<var>));

<var> ::= var1[index] | var2[index] | var3[index]

| var4[index] | var5[index] | var6[index]
| var7[index] | var8[index] | var9[index]
| var10[index] | var11[index] | var12[index]

<coeff> ::= (<coeff>) <op> (<coeff>) | <float>

<op> ::= + | -

<float> ::= 20 | -20 | 10 | -10 | 5 | -5
| 4 | -4 | 3 | -3 | 2 | -2 | 1

| -1 | .1 | -.1

228 17 Corporate Failure Prediction Using Grammatical Evolution

Grammar 2

<lc> ::= output = <expr> ;

<expr> ::= (<expr>) + (<expr>)
| <coeff> * (<var>/<var>)

<var> ::= var1[index] | | var12[index]

<coeff> ::= (<coeff>) <op> (<coeff>)
| <float>

<op> ::= + | -

<float> ::= 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4

| 3 | -3 | 2 | -2 | 1 | -1| .1 | -.1

Grammar 3

<lc> ::= output = expr ;

<expr> ::= (<expr>) + (<expr>)
| <coeff> * (<ratio> / <var>)

<ratio> ::= <ratio> <op> <ratio> | <var>

<var> ::= var1[index] | | var12[index]

<coeff> ::= (<coeff>) <op> (<coeff>) | <float>

<op> ::= + | -

<float> ::= 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4
| 3 | -3 | 2 | -2 | 1 | -1 | .1 | -.1

Grammar 1 permits the construction of a predictive rule consisting of a single
ratio, formed from any two discrete pieces of raw financial data. This ratio
can be rescaled as required by an evolved coefficient parameter. In essence,
this grammar searches for the best univariate predictive model. Grammar
2 permits the construction of predictive rules which chain ratios together,
producing linear rules of the form:

output = coefficient * Ratio X + coefficient * Ratio Y + ...

In each of these grammars, only ratios of the form a
b
, where a and b are discrete

pieces of financial data, are permitted.
Grammar 3 allows the construction of a linear chain of ratios, where the ratios
can take the form a+b+...

x
, greatly increasing the number of possible ratios that

can be formed from the raw data. Interested readers are referred to [29, 31]
for further details.

18

Corporate Failure Prediction Using

an Ant Model

Studies of the workings of ant colonies have inspired a series of ant colony al-
gorithms which can be used for optimisation (ant colony optimisation, ACO)
or clustering tasks. Broadly speaking, in ant systems search or learning activ-
ities are distributed over ant-like agents, which, in a metaphorical and highly
stylised way, mimic the behaviour of real ants. The communication between
the ant agents in these models during the search process is not direct, in-
stead they communicate indirectly by modifying the environment faced by
each other. There is no single ‘Ant Model’, rather there exists a family of
models, each inspired by a different aspect of ant behaviour. These models
include those inspired by:

• ant-foraging (co-operative food-retrieval) behaviour,
• brood-sorting behaviour,
• cemetery formation behaviour, and
• co-operative transport.

As yet, there are few applications of these models to the domain of finance.
This case study examines the usefulness of an ant-clustering system for the
prediction of corporate failure, using the same dataset as the last chapter.

18.1 Background

Several clustering and classification algorithms have been inspired by the ob-
servation of various sorting activities in ant colonies. At their simplest, the
sorting activities entail the picking up and depositing of items by ants, into
clusters of like-items. Examples of this include the brood-sorting behaviour of
the ant species Leptothorax unifasciatus, where ant larvae are sorted by size
and clustered at the centre of the brood area in the colony [62], and ceme-
tery building, where dead ants are collected from the colony and deposited
together.

230 18 Corporate Failure Prediction Using an Ant Model

The pick-drop behaviour of real ants can be applied to inspire a clustering
algorithm as follows. Assume a set of n-dimensional items which are to be
clustered into ‘like’ groups, and that it is wished to produce a visualisation of
the clustering process. Once a distance metric is defined, the remaining task is
to uncover a projection from n-dimensional space onto a 2-d plane such that
neighbouring vectors in n dimensions are also neighbours on the 2-d plane.
Unfortunately, the nature of the projection which will best achieve this for
a given dataset is usually unknown, and the objective of the ant (or other
clustering) model is to uncover this projection.

To achieve this, the initial projection of data vectors onto the plane can
be random, but the projection is then modified by a population of artificial
ants which randomly traverse the 2-d plane. These ants are programmed to
follow a simple pick or drop rule whereby they pick up objects (each of which
corresponds to one of the data vectors) when there are no similar objects
nearby, and drop an object they are carrying when there are similar objects
nearby. Through the pick-drop process, the ants act to modify the initial
projection into one which, as far as possible, is topology preserving. The overall
effect of the process is to sort similar objects (n-dimensional vectors) into
clusters on the 2-d plane.

18.2 Methodology

As in the last case, a total of 178 firms were selected. For every failing firm, a
matched non-failing firm is selected. Failed and non-failed firms are matched
both by industry sector and size (sales revenue three years prior to failure).
The set of 89 matched firms are randomly divided into model building (74
pairs) and out-of-sample (15 pairs) datasets. The dependent variable is bi-
nary (0,1), representing either a non-failed or a failed firm. For this case, the
financial ratios chosen were guided by those selected by Altman [3], with the
substitution of a ratio which required a market value measure, with cash from
operations/total liabilities. The five ratios utilised were:

i. R1 = Working Capital/Total Assets
ii. R2 = Retained Earnings/Total Assets
iii. R3 = Earnings before Interest and Tax/Total Assets
iv. R4 = Cash from operations/Total Liabilities
v. R5 = Sales/Total Assets

R1 : This ratio is a measure of the net liquid assets of the firm relative to firm
size.
R2 : This ratio serves as a proxy for the trading history/age of the firm. A
young firm will be likely to show a low RE/TA ratio, as it will not have had
time to build up its retained earnings.

18.2 Methodology 231

R3 : This ratio measures the productivity of the firm’s assets, removing any
tax or leverage factors. A firm’s existence, barring catastrophic environmental
events, ultimately depends on its ability to earn a return on its assets.
R4 : This ratio indicates the level of cash generation by the firm in a financial
year, relative to the size of its liabilities.
R5 : This ratio represents the efficiency with which the firm can generate
sales, given its asset base. The ratio also serves as a proxy for the industrial
sector of the firm, as well as the scale of production capacity which the firm
has chosen to adopt.

18.2.1 Ant System

The clustering model used in this case is based on those of Deneubourg et al.
[62] and Lumer and Faieta [146]. The idea behind these models is that objects
should be picked up if they are not already beside similar objects. They should
then be relocated and dropped beside other items of the same type.

Deneubourg Model

Under the original cemetery formation model of Deneubourg et al. [62], ants
traverse an x ∗ y 2-d grid, randomly moving from their current site to one of
four neighbouring sites (up-down-left-right) at each iteration of the algorithm.
If an unladen ant encounters a corpse, it picks it up with probability Ppick,
and in subsequent iterations may drop the corpse with probability Pdrop.
Assuming there is only one type of object in the environment the pick and
drop probabilities can be defined as:

Ppick =

(
k1

k1 + f

)2

(18.1)

Pdrop =

(
f

k2 + f

)2

(18.2)

where f is the perceived fraction of all the objects in the neighbourhood of the
ant (providing an estimate of the local density of dead ants or equivalently,
an estimate of the size of the local cluster), and k1 is a threshold constant.

When an ant encounters a corpse, and f 	 k1, the ant is not considered to
be in the vicinity of a large cluster, and therefore should pick up the corpse in
order to drop it on a cluster somewhere else (therefore, Ppick should be close
to one). Conversely, if an ant encounters a corpse and f
 k1, the ant is close
to a large existing cluster and should not move the corpse as it is already in
a large cluster of corpses (therefore Ppick should be close to zero).

The probability that a randomly moving loaded ant, drops an object
(Pdrop) is governed by a second threshold constant k2. When f 	 k2, the
ant carrying a corpse is not close to a cluster of other corpses, and therefore

232 18 Corporate Failure Prediction Using an Ant Model

should continue to carry the corpse until a cluster is found (Pdrop is close to
zero).

The value of f is an important parameter in the algorithm, as it directly
impacts on both the probability of picking up or depositing a corpse. In the
Deneubourg et al. algorithm, the value of f is calculated by each ant, based
on its personal history. It is assumed that each ant has a T period memory. If
we assume that an ant can only encounter 0 or 1 objects per time unit, and
letting N represent the total number of objects encountered during T time
periods, f is calculated as = N/T .

The algorithm leads to ant behaviour such that small clusters of dead
ants (perhaps of size 1) are emptied, and large clusters grow. In turn, the
large clusters will tend to merge. Extending this algorithm to cases where
there is more than one object type, f is replaced by a series of f values, each
representing the fraction of each type of object encountered during the last T
time units [23].

Lumer and Faieta Model

The canonical model above was generalised by Lumer and Faieta [146], with
the inclusion of a distance or dissimilarity measure between objects. Let
d(oi, oj) be the distance between two objects oi and oj in the space of ob-
ject attributes. Assume that an ant is located at site r on a 2-d grid at time
t, and it finds an object oi at that site. The local density (f(oi)) with respect
to object oi at site r is given by:

f(oi) = max

⎧⎨
⎩0,

1

s2

∑
oj∈Neigh(s∗s)(r)

[
1 − d(oi, oj)

α

]⎫⎬
⎭ (18.3)

f(oi) (an analogue to f in the model of Deneubourg et al.) is a measure
of the average similarity of oi with other objects which are present in its
neighbourhood, defined as the s ∗ s positions on the 2-d grid around the grid
location of oi which the ant can ‘see’.1 α is a tuning knob for the degree of
dissimilarity discrimination between objects. If α is large, even quite dissimilar
items may be clustered together, if it is small, distances between vectors in the
attribute space are amplified, and even similar vectors may end up in different
clusters.

Taking two extreme cases to demonstrate the calculation of local density,
if all the sites around oi are occupied by objects which are similar to it then
f(oi)=1 and oi should be picked up with a low probability. If all sites around
oi are occupied by objects which are very dissimilar to it then f(oi) is small
and oi should be picked up with a high probability. Under the Lumer and

1Therefore, in comparison with the Deneubourg algorithm which uses a memory
to calculate f , the LF algorithm allows each ant have a direct perception of the area
surrounding its current location.

18.2 Methodology 233

Faieta model, the pick and drop probabilities of the Deneubourg et al. model
are altered to:

Ppick(oi) =

(
k1

k1 + f(oi)

)2

(18.4)

Pdrop(oi) = 2f(oi), if f(oi) < k2 (18.5)

Pdrop(oi) = 1, if f(oi) ≥ k2 (18.6)

Algorithm Used in This Case Study

The algorithm used in this case study is closely modelled on that of Lumer
and Faieta. Each company (i) is defined by a vector of its financial ratios,
Companyi = (r1, ..., rn), where n is the number of financial ratios used in the
clustering model. In this case we limit n to 5.

Each company (i) is symbolised by an object oi on the 2-d grid. Initially,
these objects are randomly scattered over the 2-d grid, and during the exe-
cution of the algorithm they are clustered into heaps of similar items. The
distance between two objects is calculated by the Euclidean distance between
the two companies’ vector of financial ratios in Rn. There is no direct link
between the position of an object on the 2-d plane and its vector in Rn.

At the start of the algorithm, a fixed number of ants are placed on the 2-d
grid. During each iteration of the algorithm, an ant may either be carrying
an object or not. In the first case, the ant may:

• drop the object on a neighbouring empty location,
• drop the object on a neighbouring object, if both are similar, or
• drop the object on a neighbouring heap, if the object is similar to other

members of the heap.2

If the ant is not already carrying an object, it may:

• pick up a single object from a neighbouring location, or
• pick up the most dissimilar object from a heap on a neighbouring location.

The pseudo-code for the algorithm follows:

{Initialization} For every company Oi do

Place Oi randomly on grid
End For

For all ants do
Place ant at randomly selected site

End For

{Main Loop} For t = 1 to tmax do
For all ants do
IF((ant unloaded)and(site occupied by company Oi)) then

2A heap arises when there are multiple objects on a single grid location.

234 18 Corporate Failure Prediction Using an Ant Model

Compute f(Oi) and Prob (pick)(Oi)

Draw random real number R between 0 and 1
IF (R <=Prob (pick) (Oi) then

Pick up company Oi
End If
ELSE If((ant carrying company Oi)

and (site is empty)) then
Compute f(Oi) and Prob (drop)(Oi)

Draw random real number R between 0 and 1
IF (R<= Prob (drop)(Oi)) then

Drop company Oi

End If
End If

Move to randomly selected neighbouring site not
occupied by other ant

End For
End For

The algorithm acts to construct clusters, such that the distances between
objects of the same cluster are small in comparison with the distances between
objects in different clusters. As the algorithm runs, and clusters start to form,
the probability of objects being picked up diminishes and limt→inf Probpick →
0, as similar objects are grouped together.

Fig. 18.1. As the algorithm iterates the individual points representing failed and
healthy companies group into distinct clusters

18.3 Results 235

Analysing the Output from the Algorithm

The output from the clustering algorithm is a visual map of the individual
firms (Fig. 18.1). Like self-organising maps (SOMs) the ant clustering algo-
rithm is unsupervised in that it does not make use of a priori group mem-
berships during the training process. Therefore, once the training process is
complete and a number of clusters have been created by the algorithm, the
modeller must assign a class label to each cluster. The simplest way to do this
is to assign a label to each cluster based on whether the companies in that
cluster are primarily healthy or failed. Once the label is assigned, all com-
panies in the cluster are given the same classification. By comparing these
classifications with the known classifications for the training companies, the
in-sample accuracies for the model can be obtained.

The out-of-sample data can then be classified by determining which clus-
ter each out-of-sample item is closest to. A basic method of doing this is to
calculate the mean values on each dimension for all the training items in a
cluster. Once the mean value for the ‘centre’ of each cluster has been deter-
mined, every out-of-sample data vector is assigned to the cluster to which it is
closest using Euclidean distance, and the out-of-sample classification accuracy
is then determined.

18.3 Results

The efficiency of the algorithm and the number of clusters which are identified
in the data depends on the choices of the parameters for the algorithm which
the user selects. For example, choosing a large grid size will tend to increase
the run-time of the algorithm as the ants spend much time traversing empty
grid positions. A large grid size will also tend to produce a greater number of
clusters, particularly in the earlier stages of the algorithm. Using too few ants
also results in a very slow clustering process. Following a trial and error process
to determine the parameter settings for the ant system, the final configuration
was as follows:

• a population of 40 ants,
• k1=0.12,
• k2=0.3,
• α=1.15,
• step=6 (distance travelled on the grid by an ant during each iteration of

the algorithm),
• tmax=3.5E+5 (number of iterations of algorithm), s=3, and
• grid size = 150*150.

These settings are broadly similar to those used by Lumer and Faieta. Accu-
racy of the developed models was assessed based on their classification accu-
racy on the out-of-sample dataset. Summarised classification accuracies for the

236 18 Corporate Failure Prediction Using an Ant Model

Cluster

Out of sample company

Fig. 18.2. A screenshot from the ant clustering system showing a number of
clusters, and highlighting one of the out-of-sample datapoints

ant models for the three years prior to failure and for a benchmark LDA model
are provided in Table 18.1. Additional metrics were collected on the positive
accuracy (correct prediction of non-failure) and negative accuracy (correct
prediction of failure) for each of the models. Table 18.2 provides these for the
out-of-sample datasets for the LDA and ant models.

Table 18.1. LDA vs ant model out-of-sample results for one to three years prior
to failure

Results LDA Ant

T-1 78.0% 66.67%
T-2 58.0% 73.33%
T-3 58.0% 56.67%

The overall results indicate that both the ant and the LDA models can cor-
rectly distinguish between solvent and insolvent firms. The classification ac-
curacy of the LDA model exceeds that of the ant model in both T-1 and T-3,
with the ant model outperforming the LDA model in T-2.

18.3 Results 237

Table 18.2. Out-of-sample positive and negative classification accuracy for LDA
and ant models, one to three years prior to failure

LDA Positive Negative
Accuracy Accuracy

T-1 80.0% 76.0%
T-2 76.0% 40.0%
T-3 52.0% 64.0%

Ant

T-1 80.0% 53.33%
T-2 80.0% 66.67%
T-3 46.67% 66.67%

Table 18.3. Stability of results of ant model for T-1

Recut Positive Negative Overall
Accuracy Accuracy

1 86.66% 53.33% 70.00%
2 80.00% 53.33% 66.66%
3 60.00% 66.66% 63.33%
4 73.33% 53.33% 63.33%
5 60.00% 40.00% 50.00%
6 80.00% 40.00% 60.00%
7 86.66% 33.33% 60.00%
8 86.66% 20.00% 53.33%
9 80.00% 60.00% 70.00%
10 73.33% 66.66% 70.00%

Prior studies of corporate failure have suggested that it is more difficult to
accurately predict insolvency than solvency, as firms can fail for a multitude of
reasons, not all of which result from a failure trajectory [158]. Therefore, the
overall results are decomposed to examine the positive and negative classifica-
tion accuracies (correct prediction of non-distressed, and correct prediction of
distressed) for each model. The expected pattern emerges for the LDA model,
and for the ant model in T-1 and T-2.

To assess the stability of the results from the ant model for different ran-
domisations of the training/out-of-sample data, ten recuts of the dataset were
performed, and the out-of-sample classification accuracies for each of these are
presented in Table 18.3. The classification accuracies display variability, but
we are unable to categorically state whether this arises due to the stochas-
tic nature of the algorithm or because of the small size of the out-of-sample
dataset. Further analysis with a larger dataset is required to cast more light
on the stability of the algorithm’s performance.

238 18 Corporate Failure Prediction Using an Ant Model

18.4 Discussion

The objective of this case is to demonstrate a novel application of an ant-
inspired clustering model, the prediction of the solvency of corporations. The
results suggest that corporate failure can be forecast using an ant methodol-
ogy, and also suggest that ant-inspired algorithms could be useful for predict-
ing credit ratings.

Several opportunities exist to extend this case. We did not attempt to opti-
mise the selection of ratio inputs, or to consider a wider range of financial/non-
financial inputs on each firm or the environment, and this step could have
improved the results of the ant model and the benchmark LDA model. It is
also possible that the results for the ant model could have been improved if
an exhaustive search to find the optimal parameters of the ant model had
been undertaken. There are several other ant-clustering algorithms in exis-
tence [180, 183], and it would be interesting to compare the performance of
each of these algorithms on this and other financial classification problems.

19

Bond Rating Using Grammatical Evolution

Most large firms use both share and debt capital to provide long-term finance
for their operations. The debt capital may be raised from a bank loan, or
may be obtained by selling bonds directly to investors. As an example of
the scale of US bond markets, the value of new bonds issued in 2004 totaled
$5.48 trillion, and the total value of outstanding marketable bond debt at 31
December 2004 was $23.6 trillion [24].1

When a company wants to issue traded debt (bonds), it must obtain a
credit rating for the issue from at least one recognised rating agency (Standard
& Poor’s (S&P), Moody’s, Fitches’ or Dominion Bond Rating Service). The
credit rating represents the rating agency’s opinion at a specific date of the
creditworthiness of a borrower in general (an issuer credit rating), or in respect
of a specific debt issue (a bond credit rating). These ratings impact on the
borrowing cost, and the marketability of issued bonds.

In common with the related corporate failure prediction problem, a fea-
ture of the bond-rating prediction problem is that there is no clear theoretical
framework for guiding the choice of explanatory variables, or model form. In
the absence of an underlying theory, most published work on credit rating
prediction employs a data-inductive modelling approach, using firm-specific
financial data as explanatory variables, in an attempt to recover the rating
model used by an agency. This produces a high-dimensional combinatorial
problem, as the modeller is attempting to uncover a good set of explanatory
variables, and model form, giving rise to particular potential for an evolu-
tionary automatic programming methodology such as grammatical evolution
(GE). This case demonstrates the application of GE in order to construct a
model which can predict the bond rating of a firm.

1In comparison, the total global market capitalisation of all companies quoted
on the NYSE at 31/12/04 was $19.8 trillion [164].

240 19 Bond Rating Using Grammatical Evolution

19.1 Background

Several categories of individuals would be interested in a model that could pro-
duce accurate estimates of bond ratings. Such a model would be of interest to
firms that are considering issuing debt as it would enable them to estimate the
likely return investors would require if the debt was issued, thereby providing
information for pricing the bonds. The model could also be used to assess the
creditworthiness of firms that have not issued debt and hence do not already
have a published bond rating. This information would be useful to bankers
or other companies that are considering whether they should extend credit to
that firm.

Most rated debt is publicly tradable on stock markets, and bond ratings
are typically changed infrequently. An accurate bond-rating prediction model
could indicate whether the current rating of a bond is still justified. To the
extent that an individual investor could predict a bond re-rating before other
investors foresee it, this may provide a trading edge.

In addition, the recent introduction of credit-risk derivatives allows in-
vestors to buy protection against the risk of the downgrade of a bond [5]. The
pricing of such derivative products requires a quality model for estimating the
likelihood of a credit rating change.

Notation for Credit Ratings

Although the precise notation used to denote the creditworthiness of a bond
or issuer varies between rating agencies, the credit status is generally denoted
by means of a discrete, mutually exclusive, letter rating. Taking the rating
structure of S&P as an example, the ratings are broken down into 10 broad
classes. The highest rating is denoted AAA, and the ratings then decrease in
the following order, AA, A, BBB, BB, B, CCC, CC, C, D. Ratings between
AAA and BBB (inclusive) are deemed to represent investment grade, with
lower quality ratings deemed to represent debt issues with significant specu-
lative characteristics (also called junk bonds). A ‘C’ grade represents a case
where a bankruptcy petition has been filed, and a ‘D’ rating represents a case
where the borrower is currently in default on their financial obligations. As
would be expected, the probability of default depends strongly on the initial
rating which a bond receives (Table 19.1). Ratings from AAA to CCC can be
modified by the addition of a + or a - to indicate at which end of the rating
category the bond rating falls.

19.1.1 Rating Process

Rating agencies earn fees from bond issuers for evaluating the credit status
of new issuers and bonds, and for maintaining credit rating coverage of these
firms and bonds. A company obtains a credit rating for a debt issue by con-
tacting a rating agency and requesting that an issue rating be assigned to the

19.2 Methodology 241

Table 19.1. Rate of default by initial rating category (1987-2002) (from Standard
& Poor’s, 2002)

Initial Default Rate
Rating (%)

AAA 0.52
AA 1.31
A 2.32
BBB 6.64
BB 19.52
B 35.76
CCC 54.38

new debt to be issued, or that an issuer rating be assigned to the company
as a whole. As part of the process of obtaining a rating, the firm submits
documentation to the rating agency including recent financial statements, a
prospectus for the debt issue, and other non-financial information. Discus-
sions take place between the rating agency and management of the firm and a
rating report is then prepared by the analysts examining the firm. This rating
report is considered by a rating committee in the rating agency which decides
the credit rating to be assigned to the debt issue/issuer.

Rating agencies emphasise that the credit rating process involves consider-
ation of financial as well as non-financial information about the firm, and also
considers industry and market-level factors. The precise factors and related
weighting of these factors used in determining a bond’s rating are not pub-
licly disclosed by the rating agencies. Subsequent to their initial rating, a bond
may be re-rated upwards (upgrade) or downwards (downgrade) if company or
environmental circumstances change. A re-rating of a bond below investment
grade to junk bond status (such bonds are colourfully termed fallen angels)
may trigger a significant sell-off as many institutional investors are only al-
lowed, by external or self-imposed regulation, to hold bonds of investment
grade.

19.2 Methodology

The dataset consists of financial data drawn from the financial statements of
791 non-financial US companies, along with their associated S&P bond-issuer
credit-rating. In this case, we restrict attention to discriminating between
investment grade vs junk grade ratings. In the dataset 57% of companies have
an investment-grade rating (AAA, AA, A or BBB), and 43% have a junk
rating. To allow time for the preparation of year-end financial statements,
the filing of these statements with the Securities and Exchange Commission
(SEC), and the development of a bond rating opinion by Standard & Poor’s
rating agency, the bond rating of the company as at 30 April 2000, is matched

242 19 Bond Rating Using Grammatical Evolution

with financial information drawn from their financial statements as at 31
December 1999.

Sample Selection

A subset of 600 firms was randomly sampled from the total of 791 firms to
produce two groups of 300 investment grade and 300 junk rated firms. The
600 firms were randomly allocated to the training set (420) or the hold-out
sample (180), ensuring that each set was equally balanced between investment
and non-investment grade ratings.

Input Selection

A total of eight financial variables were selected for inclusion in this study. The
selection of these variables was guided both by prior literature in bankruptcy
prediction, literature on bond rating prediction, and by preliminary statistical
analysis. The financial ratios chosen during the selection process were:

i. Current ratio
ii. Retained earnings to total assets
iii. Interest coverage
iv. Debt ratio
v. Net margin
vi. Market to book value
vii. Total assets
viii. Return on total assets

The objective in selecting a set of proto-explanatory variables is to choose fi-
nancial variables that vary between companies in different bond rating classes,
and where information overlaps between the variables are minimised. Com-
paring the means of the above ratios for the two groups of ratings (Table 19.2),
reveals a statistically significant difference at the 1% level, and, as expected,
the financial ratios in each case for the investment ratings are stronger than
those for the junk ratings. The only exception is the current ratio, which is
stronger for the junk rated companies, possibly indicating a preference for
these companies to hoard short-term liquidity, as their access to long-term
capital markets is weak. Table 19.3 provides a correlation analysis between
the selected ratios. Examination of the correlations indicates that most are
quite low, with the only notable correlation being between the debt ratio and
(retained earnings/total assets) ratio.

Grammar

The grammar adopted in this study is as follows:

19.3 Results 243

Table 19.2. Means of input ratios for investment and junk bond groups of compa-
nies

Investment Junk
grade grade

Current ratio 1.354 1.93
Retained earnings/Total assets 0.22 -0.12
Interest coverage 7.08 1.21
Debt ratio 0.32 0.53
Net margin 0.07 -0.44
Market to book value 18.52 4.02
Total assets 10083 1876
Return on total assets 0.10 0.04

Table 19.3. Correlations between financial ratios

CR RE/TA IC DR NM MTB TA ROA

CR 1 -0.08 -0.01 0.06 -0.27 0.01 -0.18 -0.15

RE/TA -0.08 1 0.27 -0.64 0.14 0.15 0.15 0.48

IC -0.01 0.27 1 -0.28 0.06 0.31 0.15 0.41

DR 0.06 -0.64 -0.28 1 -0.05 -0.19 -0.20 -0.27

NM -0.27 0.14 0.06 -0.05 1 0.01 0.03 0.22

MTB 0.01 0.15 0.31 -0.19 0.01 1 0.04 0.14

TA -0.18 0.15 0.15 -0.20 0.03 0.04 1 0.07

ROA -0.15 0.48 0.41 -0.27 0.22 0.14 0.07 1

<lc> ::= if(<expr> <relop> <expr>) class=’’Junk’’; else class=’’Investment Grade’’;

<expr> ::= (<expr>) + (<expr>) | <coeff> * <var>

<var> ::= var3 | var4 | var5 | var6 | var7 | var8 | var9 |var10 | var11

<coeff> ::= (<coeff>) <op> (<coeff>) | <float>

<op> ::= + | - | *

<float> ::= 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | -1 | .1

<relop> ::= <=

where var3 = Current Ratio, var4 = Retained Earnings to total asset, var5
= Interest Coverage, var6 = Debt Ratio, var7 = Net Margin, var8 = Market
to book value, var9 = Total Assets, var10 = ln (Total Assets), var11 =
Return on total assets.

19.3 Results

Each of the GE experiments is run for 100 generations, with variable-length
one-point crossover at a probability of 0.9, one point bit mutation at a prob-
ability of 0.01, roulette selection, and steady-state replacement. Results are
reported for two population sizes (500 and 1000), and for two distinct fitness

244 19 Bond Rating Using Grammatical Evolution

functions. To assess the stability of the results across different randomisations
of the dataset between training and test data, the dataset was recut five times,
maintaining an equal balance of investment and non-investment grade ratings
in the resulting training and test datasets.

In the experiments, fitness is defined as the number of correct classifi-
cations produced by an evolved discriminant rule. The results for the best
individual of each cut of the dataset, where 30 independent runs were per-
formed for each cut, averaged over all five randomisations of the dataset, for
both the 500 and 1000 population sizes, are given in Table 19.4.

Table 19.4. Performance of the best evolved rules on their training and out-of-
sample datasets, averaged over all five randomisations

Fitness TP TN FP FN

Train GEBOND500 86.15% 185.2 175.8 33.4 24.6
Train GEBOND1000 86.78% 183.2 180.4 28.8 26.6
Out-Sample GEBOND500 85.60% 77.6 75.8 13.6 12.2
Out-Sample GEBOND1000 86.26% 77.8 76.6 12.6 12

To assess the overall hit-ratio (classification accuracy) of the developed mod-
els (out-of-sample), Press’s Q statistic was calculated for each model. In all
cases, the null hypothesis, that the out-of sample classification accuracies are
not significantly better than those that could occur by chance alone, was re-
jected at the 1% level. A t-test of the hit-ratios also rejected a null hypothesis
that the classification accuracies were no better than chance at the 1% level.
Across all the data recuts, the best individual achieved an 87.56 (84.36)% ac-
curacy in-sample (out-of-sample) when the population size was 500, with the
best individual across all data recuts in the population=1000 case obtaining
an accuracy of 87.59 (84.92)% accuracy in-sample (out-of-sample). Although
the average out-of-sample accuracy obtained for population=1000 slightly ex-
ceeds that for population=500, the difference was not found to be statistically
significant. A plot of the best and average fitness on each cut of the in-sample
dataset, for the population=500 case, can be seen in Fig. 19.1, and for the
case where population=1000 in Fig. 19.2.

A second series of experiments was undertaken using a fitness measure that
takes into consideration negative classifications. The fitness measure adopted
earlier does not explicitly take into consideration the amount of under and
over-prediction represented by false negatives and false positives, respectively.
A more general measure considers the correlation between the prediction and
the observed reality [148]. A correlation measure indicates how much bet-
ter a particular predictor is than random predictions, and has been adopted
previously in GP [132]. In the case of a binary classification problem the cor-
relation measure, C, and the calculation of a corresponding fitness value, are
given below.

19.3 Results 245

 0.74

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0 20 40 60 80 100

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Bond Rating

cut1
cut2
cut3
cut4
cut5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100

M
ea

n
A

ve
ra

ge
 F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Bond Rating

cut1
cut2
cut3
cut4
cut5

Fig. 19.1. Best and average fitness values of 30 runs on the five recuts of the
in-sample dataset with a population size of 500

C =
(Ntp ∗ Ntn − Nfn ∗ Nfp)√

(Ntn + Nfn) ∗ (Ntn + Nfp) ∗ (Ntp + Nfn) ∗ (Ntp + Nfp)
(19.1)

Fitness =
(C + 1)

2
(19.2)

where Ntp, Ntn, Nfp, Nfn are the number of true positives, true negatives,
false positives, and false negatives respectively. A fitness value of zero means
there is no correlation to the observed cases, a value of 0.5 means the clas-
sification accuracy is no better than random, and a value of 1.0 means a
perfect correlation to observed cases. Results using this fitness measure for
population sizes of both 500 and 1000 are provided in Table 19.5. Assessing
the out-of-sample hit-ratio of the developed models using Press’s Q statistic
rejects the null hypothesis, that the out-of sample classification accuracies are
not significantly better than those that could occur by chance alone, at the
1% level, however the models developed using this fitness function did not
outperform those developed using the initial fitness function. As for the ini-
tial fitness function, the average classification accuracy (out-of-sample) was
slightly higher for the case where population=1000 than for population=500,
but the difference was not statistically significant.

246 19 Bond Rating Using Grammatical Evolution

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0 20 40 60 80 100

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Bond Rating

cut1
cut2
cut3
cut4
cut5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100

M
ea

n
A

ve
ra

ge
 F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Bond Rating

cut1
cut2
cut3
cut4
cut5

Fig. 19.2. Best and average fitness values of 30 runs on the five recuts of the
in-sample dataset with a population size of 1000

Table 19.5. Performance of the best evolved rules on their training and out-of-
sample datasets, averaged over all five randomisations

Fitness TP TN FP FN

Train GEBOND500 0.8568 183.8 175.2 34 26
Train GEBOND1000 0.8644 187.8 174.4 34.8 22
Out-sample GEBOND500 0.8033 66 77.8 11.4 23.8
Out-sample GEBOND1000 0.8514 78.8 73.6 15.6 11

A plot of the best and average fitness on the five recuts of the in-sample
dataset can be seen in Fig. 19.3 for population=500, and Fig. 19.4 for popu-
lation=1000.

Structure of the Evolved Classification Rules

Examining the structure of the best individual in the case where the initial
fitness function was utilised and where population=500 shows that the evolved
discriminant function had the following form:

IF (10+16var6-9var4-2var9) ≥ 0 THEN ‘Junk’ ELSE ‘Investment Grade’

where var6 is Debt Ratio, var4 is Retained Earnings
Total Assets

, and var9 is Total Assets.

19.4 Discussion 247

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0 20 40 60 80 100

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Bond Rating

cut1
cut2
cut3
cut4
cut5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Bond Rating

cut1
cut2
cut3
cut4
cut5

Fig. 19.3. Best and average fitness values of 30 runs on the five recuts of the
in-sample dataset using the correlation fitness measure with a population size of 500

In the case where population=1000, the best evolved discriminant function
had a similar form to the above:

IF (5+8var6-4var4-var9) ≥ 0 THEN ‘Junk’ ELSE ‘Investment Grade’

Examining the signs of the coefficients of the evolved rules does not suggest
that they conflict with common financial intuition. The rules indicate that
low/negative retained earnings, low/negative total assets or high levels of
debt finance are symptomatic of a firm that has a junk rating. Conversely,
low levels of debt, a history of successful profitable trading, and high levels of
total assets are symptomatic of firms that have an investment grade rating.

19.4 Discussion

The objective of this case was to illustrate the application of GE to model
the corporate bond rating process. Despite using data drawn from companies
in a variety of industrial sectors, the developed models showed an impressive
capability to discriminate between investment and junk rating classifications.
Several extensions of the case study are possible. The predictive target could

248 19 Bond Rating Using Grammatical Evolution

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0 20 40 60 80 100

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Bond Rating

cut1
cut2
cut3
cut4
cut5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100

M
ea

n
A

ve
ra

ge
 F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Bond Rating

cut1
cut2
cut3
cut4
cut5

Fig. 19.4. Best and average fitness values of 30 runs on the five recuts of the
in-sample dataset using the correlation fitness measure with a population size of
1000

be changed to predict the precise bond rating (a multi-classification model),
or to predict which bonds will be re-rated in the foreseeable future. Another
extension would be to extend the range of data inputs used in the model
to include non-financial information about the firm and its industrial sector,
or to include measures of how the firm is performing relative to its industry
peers. Another possibility, particularly if the object is to anticipate a rerating,
is to include metrics on changes in the financial ratios of the firm over the
past few years, for example, have profits declined over the past three years,
or have debt levels increased?

20

Bond Rating Using AIS

The natural immune system is a highly complex system, comprised of an
intricate network of specialised tissues, organs, cells and chemical molecules.
The natural immune system can recognise, destroy and remember an almost
unlimited numbers of pathogens (foreign objects that enter the body, including
viruses, bacteria, multi-cellular parasites, and fungi). To assist in protecting
the organism, the immune system has the capability to distinguish between
self and non-self. Notably, the system does not require exhaustive training
with negative (non-self) examples to make these distinctions, but can identify
items as non-self which it has never before encountered. The mechanisms of
natural immune systems, including their ability to distinguish between self
and non-self proteins, provide a rich metaphorical inspiration for the design
of pattern recognition algorithms. This chapter illustrates how an algorithm
drawn from an immune system metaphor can be used to create a classification
system to distinguish between investment and junk rated bonds.

20.1 Methodology

The same dataset is used in this case as in the last chapter, and consists of
financial information on 791 US companies, drawn from the S&P Compustat
database. Again, the S&P bond rating of each company as at 30 April 2000
is matched with financial information drawn from their financial statements
as at 31 December 1999. As in the last chapter, the eight financial ratios used
are:

i. Current ratio
ii. Retained earnings to total assets
iii. Interest coverage
iv. Debt ratio
v. Net margin
vi. Market to book value
vii. Total assets

250 20 Bond Rating Using AIS

viii. Return on total assets

All ratios in the dataset were normalised into the range (0,1) after clipping
outliers. Therefore the self /non-self space is an eight-dimensional hypercube,
where each dimension corresponds to an individual financial ratio. In order
to train the detectors, 25% of the self-data (companies with investment-grade
ratings) was randomly chosen.

Self- Tolerisation
T-cells which react with self

proteins are destroyed so only
non-self T-Cells are allowed to

survive

Training Detectors on Self
Detectors that are too ‘close’ to
investment grade companies are

destroyed so only non-self
detectors allowed survive

Search
Surviving T-cells

(lymphocytes) circulate
throughout the body looking for

invading antigens

Comparision
Detector Set Compared with
Out-of-Sample Data (Both

investment grade junk grade
companies)

Marking
Invading Antigens and

associated pathogens are
marked by roaming antibodies

as non-self elements

Junk Grade Companies are
identified as non-self by

detectors

Elimination
Marked pathogens are then
destroyed by the immune

system

Separation
Out-of-Sample Dataset

separated into investment grade
and non-investment grade

companies

Identification

Artificial Immune SystemNatural Immune System

Fig. 20.1. Comparison of natural immune system processes and the negative se-
lection algorithm for bond rating classification

20.1 Methodology 251

The Negative Selection Algorithm

The canonical real-valued negative selection algorithm is compared to pro-
cesses in the natural immune system in Fig. 20.1. Initially a predetermined
number of detectors are randomly created. During the training, or tolerisation,
process any detector that falls within a threshold distance rs of any elements
of the training set of self samples is discarded. The process of detector gener-
ation is iterated until the required number of valid detectors is created. The
pseudo-code for the algorithm is as follows (S is the set of self-samples, rs

is a predefined threshold distance, and it is assumed that the search-space is
bounded by an n-dimensional (0,1) hypercube):

i. Detector set (D) is empty
ii. Repeat
iii. Create a random vector x, drawn from [0, 1]n

iv. For for every si in S, si : i = 1, 2, ..., m
v. Calculate the Euclidean distance (d) between si and x

vi. If d ≤ rs go to step ii
vii. Add x (a valid non-self detector) to set D
viii. Until D contains the required number of valid detectors

Once the required number of detectors has been created, they can be used to
classify new data observations. To do this the new data vector is presented to
the population of detectors, and if it does not fall within rs of any of them,
the data vector is deemed to be self, as it did not trigger any of the non-self
detectors, otherwise the new data vector is deemed to be non-self. In this case
study, self is defined as a company with an investment grade rating, and each
company is characterised by its vector of eight accounting ratios.

Algorithm Design

When developing the classification system, the non-self detectors are initially
located randomly in the self/non-self space. The distance between each detec-
tor and each self company in the training sample being used to construct the
classifier is calculated, and if a detector is within the threshold distance of any
self vector, it is discarded and a new detector is randomly created to replace
it. A detector is discarded where the median distance between it and the k-
nearest self vectors is less than the threshold distance. The use of k-nearest
neighbours (rather than just the nearest self vector) makes the algorithm less
susceptible to noise in the input data [96]. In our experiments k is set at 5.

Once the full population of valid detectors has been generated, they can
be exposed to new (out-of-sample) data, and used to predict whether these
companies have an investment grade rating or not. New data vectors which
are within range of a detector, and therefore which have characteristics similar
to non-investment grade companies, are classed as having a non-investment
grade rating, otherwise the vector is classed as an investment grade company.

252 20 Bond Rating Using AIS

As in the training process, determining whether a detector has been triggered
depends the Euclidean distance between the detector and a test data vector.
A vector (company) in the out-of-sample test set that is within a threshold
distance of any detector is deemed to be a non-self, a non-investment grade
company.

Algorithm Settings

The algorithm requires that the modeller specifies both the number of de-
tectors and the size of the threshold distance. Following experimentation on
the dataset, the number of detectors was set at 500, and a threshold distance
of 0.80 was applied. Intuitively, the number of detectors and the size of the
threshold distance determines the degree of coverage of the self/non-self space
by the detectors. As the number of detectors and their threshold distance in-
creases, the model will tend to misidentify investment-grade companies as be-
ing non-investment grade. Conversely, if there are very few detectors, and/or
they have a small threshold distance, the model will tend to misidentify non-
investment grade companies as being investment grade. Hence, the selection
of the number of detectors and the threshold distance seeks to trade-off these
two errors.

20.2 Results

The overall classification accuracy on the out-of-sample datasets was used to
assess the performance of the developed classification model. Averaged over
three recuts of the dataset between training and test data, a classification
accuracy of 70.86% was obtained. This accuracy is poorer than that obtained
by the GE classifier developed in the last chapter, however it is still sufficient
to reject a null hypothesis, at the 5% level, that the out-of-sample classification
accuracies are not significantly better than chance.

20.3 Discussion

In this case a novel methodology inspired by the workings of the natural
immune system, the negative selection algorithm, was introduced and applied
for the purposes of prediction of corporate bond-issuer ratings. The developed
classifier was found to be able to distinguish between firms with investment
grade and non-investment grade ratings with reasonable accuracy, using a
small number of financial ratios drawn from the financial statements of those
companies.

Artificial immune systems represent a relatively new class of algorithms
and, as yet, few business applications of these algorithms have been devel-
oped. The negative selection algorithm used in this case has general utility for

20.3 Discussion 253

classification and it can be applied in a wide variety of settings. Examples of
potential business applications include corporate failure prediction [27], fraud
detection, and customer database segmentation.

A number of improvements could be implemented to further improve the
efficiency of the algorithm. It is not generally efficient to attempt to cover all
the non-self space with detectors, rather the aim is to cover regions of non-
self space in which future observations of non-self are more likely to occur.
Unlike the scenario faced by natural immune systems, in this case historic ex-
amples of non-self (junk-rated companies) already exist. These could be used
to seed the process of creating valid detectors in order to speed it up. The
task of generating a population of valid detectors grows rapidly as the size
of self increases. Therefore seeding could be particularly useful when develop-
ing classification systems for high-dimensional business applications. Another
possibility is to automate the selection of parameters such as the number of
detectors. Recent work by Gonzalez and Cannady [97] demonstrates the po-
tential of a hybrid AIS system which embeds an evolutionary algorithm for
the purposes of automating parameter selection.

Another extension to the methodology adopted in this case would be to
apply the variable-size detector algorithm, which was developed by Ji and
Dasgupta [117]. In the canonical real-valued negative selection algorithm de-
scribed above, the detectors have a fixed radius of detection. In the variable
detector algorithm, the radius of each detector is permitted to differ. This
allows areas of non-self which are far removed from any self vectors to be cov-
ered with a relatively small number of large radius detectors, and also allows
for the insertion of smaller detectors to cover any gaps or holes in the non-self
space between the large detectors.

21

Wrap-up

The objective of this book has been to provide readers with an up-to-date
introduction to a broad range of biologically inspired algorithms, an introduc-
tion to trading system design, and an illustration of the practical application
of several of the biologically inspired algorithms introduced in the book. We
hope that this book will help spark new ideas in the minds of readers to
encourage them to undertake their own work in financial modelling using
biologically inspired methodologies.

The nature of financial modelling is that it will always be a difficult domain
for prediction. As markets respond quickly to unanticipated events, prices
can never be completely predictable, and investing will always carry the risk
of loss. The limitations on our ability to test models should also be borne
in mind. Experiments in financial modelling cannot be replicated under con-
trolled conditions, and historical values of market prices and fundamental data
only provide a single sample path of the market’s behaviour through time. It
is unrealistic to suppose that a model with a limited number of explanatory
variables will produce high-quality predictions indefinitely, or in all market
conditions. Models will date and require replacement. To minimise the risk
of catastrophic failure, traders must combine carefully crafted models with
carefully crafted money-management strategies, which diversify investments
across markets and across multiple trading models.

No claim can be made that the recent advances in biologically inspired al-
gorithms described in this book provide an easy route to get-rich-quick trading
systems. The new tools do not remove the traditional modelling requirements
for domain knowledge, the careful selection and preprocessing of inputs, the
postprocessing of outputs, and the all-important plausibility test. Financial
markets are a battleground, and information collection and analysis technolo-
gies represent the weaponry of traders. Novel biologically inspired algorithms
provide us with powerful new tools which are capable of detecting subtle pat-
terns between inputs and outputs. Carefully applied these have the potential
to provide at least a temporary trading edge.

References

1. Aickelin, U. and Cayzer, S. (2002). The Danger Theory and Its Application to
Artificial Immune Systems, in Proceedings of the 1st International Conference
on Artificial Immune Systems, pp. 141-148, Canterbury, UK.

2. Allen, F. and Karjalainen, R. (1999). Using genetic algorithms to find technical
trading rules, Journal of Financial Economics, 51:245-271.

3. Altman, E. (1968). Financial ratios, discriminant analysis and the prediction
of corporate bankruptcy, Journal of Finance, 23:589-609.

4. Altman, E. (1993). Corporate Financial Distress and Bankruptcy, New York:
Wiley.

5. Altman, E. (1998). The importance and subtlety of credit rating migration,
Journal of Banking and Finance, 22:1231-1247.

6. Altman, E. (2000). Predicting Financial Distress of Companies: Revisiting the
Z-score and Zeta Models, http://www.stern.nyu.edu/∼ealtman/Zscores.pdf
(accessed October 2001).

7. Altman, E., Haldeman, R. and Narayanan, P. (1977). ZETA analysis: A new
model to identify bankruptcy risk of corporations, Journal of Banking and
Finance,1:29-54.

8. Anderson, T., Bollerslev, T. and Das, A. (2001). Variance-ratio statistics and
high-frequency data: testing for changes in intraday volatility patterns, Journal
of Finance, LVI(1):305-327.

9. Angel, J. (1997). Tick size, share prices, and stock splits, Journal of Finance,
LII(2):655-680.

10. Angeline, P. (1998). Using selection to improve particle swarm optimization, in
Proceedings of the IEEE International Conference on Evolutionary Computa-
tion, Anchorage, May 1998, pp. 84-89, IEEE Press.

11. Argenti, J. (1976). Corporate Collapse: The Causes and Symptoms, London:
McGraw-Hill.

12. Back, B., Laitinen, T., Sere, K. and van Wezel, M. (1996). Chosing Bankruptcy
Predictors Using Discriminant Analysis, Logit Analysis and Genetic Algo-
rithms, Technical Report No. 40, Turku Centre for Computer Science, Turku
School of Economics and Business Administration.

13. Baestanes, D.E., Van Den Bergh, W.M. and Wood, D. (1994). Neural Network
Solutions for Trading in Financial Markets, London: Pitman Publishing.

258 References

14. Banzhaf, W. (1994). Genotype-phenotype-mapping and neutral variation – A
case study in genetic programming, in Lecture Notes in Computer Science 866,
Parallel Problem Solving from Nature III, pp. 322-332, Springer.

15. Banzhaf, W., Nordin, P., Keller, R.E., and Francone, F.D. (1998). Genetic
Programming – An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications, Morgan Kaufmann.

16. Bauer R. (1994). Genetic Algorithms and Investment Strategies, New
York:Wiley.

17. Beaver, W. (1966). Financial ratios as predictors of failure, Journal of Account-
ing Research - Supplement: Empirical Research in Accounting, 71-102.

18. Bellanta, J. and Kadlec, J. (1985). Introduction to immunology, in Immunology:
Basic Processes, ed. Bellanti, J., pp. 1-15, Philadelphia: W.B. Saunders.

19. BIS (2001). Central Bank Survey of Foreign Exchange and Derivatives Market
Activity in April 2001, Press Release, 31/2001E, Bank of International Settle-
ments, published October 2001.

20. BIS (2004). Triennial Central Bank Survey of Foreign Exchange and Deriva-
tives Market Activity in April 2004, Press Release, Bank of International Settle-
ments, http://www.bis.org/press/p040928.htm, published September 2004.

21. Blackwell, T.M. and Bentley, P.J. (2002). Dynamic search with charged swarms,
In Proceedings o f the Genetic and Evolutionary Computation Conference-
GECCO 2002, Spector et al. (Eds.), New York, USA, July 9-13, 2002, pp.
19-26, Morgan Kaufmann.

22. Blackwell, T.M. and Branke, J. (2004). Multi-swarm optimization in dynamic
environments, in LNCS 3005 EvoWorkshops 2004, Coimbra, Portugal, pp. 489-
500, Springer.

23. Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999). Swarm Intelligence: From
Natural to Artificial Systems, Oxford: Oxford University Press.

24. Bond Market Association - Research Quarterly (2005). (February 2005) http:

//www.bondmarkets.com/assets/files/Research Quarterly 0205.pdf.
25. Brabazon, A. (2002a). Neural network design using an evolutionary algorithm,

Irish Accounting Review, 9(1):1-18.
26. Brabazon, A. (2002b). Financial time series modelling using neural networks:

An assessment of the utility of a stacking methodology, in Proceedings of
AICS 2002, Lecture Notes in Artificial Intelligence (2464), (Eds.) O’Neill et
al., Springer, pp. 137-144.

27. Brabazon, A., Delahunty, A., O’Callaghan, D., Keenan, P. and O’Neill, M.
(2005). Financial classification using an artificial immune system, in Business
Applications and Computational Intelligence, Voges, K. and Pope, N. (Eds.),
Hershey, PA, USA: Idea Group Inc. (forthcoming).

28. Brabazon, A. and Keenan, P. (2004). A hybrid genetic model for the prediction
of corporate failure, Computational Management Science, 1(3-4):293-310.

29. Brabazon, A. and O’Neill, M. (2003). Anticipating bankruptcy reorganisa-
tion from raw financial data using grammatical evolution, in Proceedings of
EvoIASP 2003, Lecture Notes in Computer Science (2611): Applications of
Evolutionary Computing, (Eds.) Raidl et al., Springer, pp. 368-378.

30. Brabazon, A. and O’Neill, M. (2004). Evolving technical trading rules for spot
foreign-exchange markets using grammatical evolution, Computational Man-
agement Science, 1(3-4):311-327.

References 259

31. Brabazon, A. and O’Neill. M. (2004). Diagnosing corporate stability using
grammatical evolution, International Journal of Applied Mathematics and
Computer Science, 14(3):363-374.

32. Brabazon, A.,O’Neill, M. and Ryan, C. (2002). Grammatical evolution and cor-
porate failure prediction, in Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO 2002), (Eds.) Spector et al., New York, USA,
July 9-13, 2002, pp. 1011-1019, Morgan Kaufmann.

33. Brabazon, A., Silva, A., Ferra de Sousa, T., O’Neill, M., Matthews, R. and
Costa, E. (2005). Investigating strategic inertia using OrgSwarm, Informatica,
29(2):125-141.

34. Brabazon, A., Silva, A., Ferra de Sousa, T., O’Neill, M. and Costa, E. (2005).
Simulating the strategic adaptation of organizations using OrgSwarm, Hand-
book of Bio-inspired Algorithms and Applications, Olariu, S. and Zomaya, A.
(eds.), Chapman and Hall, pp. 303-317.

35. Brock, W., Lakonishok, J. and LeBaron B. (1992). Simple technical trad-
ing rules and the stochastic properties of stock returns, Journal of Finance,
47(5):1731-1764.

36. Brown, S., Goetzmann W. and Kumar A. (1998). The Dow Theory: William
Peter Hamilton’s track record reconsidered, Journal of Finance, 53(4):1311-
1333.

37. Chan, L. K. C., Jegadeesh, N. and Lakonishok, J. (1996). Momentum strategies,
Journal of Finance, 51(5):1681-1714.

38. Chao, D. and Forrest, S. (2003). Information immune systems, Genetic Pro-
gramming and Evolvable Machines, 4(4): 311-331.

39. Chen, J. (2002). A heuristic approach to efficient production of detector sets
for an artificial immune algorithm-based bankruptcy prediction system, in Pro-
ceedings of the Congress on Evolutionary Computation 2002, 1:932-937, New
Jersey: IEEE Press.

40. Cheng, A. C. S. (1998). International correlation structure of financial mar-
ket movements - the evidence from the United Kingdom and the US, Applied
Financial Economics, 8(1):1-13.

41. Cleary, R. and O’Neill, M. (2005). An Attribute grammar decoder for the 01
MultiConstrained Knapsack Problem, in LNCS 3488 Proceedings of the Euro-
pean Conference on Evolutionary Combinatorial Optimisation - EvoCOP 2005.
Lausanne, Switzerland, pp. 34-45. Springer.

42. Clerc, M. (1999). The swarm and the queen: towards a deterministic and adap-
tive particle swarm optimization, in Proceedings of ICEC 1999, pp. 1951-1957,
Washington, DC.

43. Colin, A. (1994). Genetic algorithms for financial modelling, in Trading on The
Edge: Neural, Genetic and Fuzzy systems for Chaotic and Financial Markets,
Guido Deboeck (Ed.)), New York: Wiley.

44. Cover, T. (1965). Geometrical and statistical properties of systems of linear in-
equalities with applications in pattern recognition, IEEE Transactions in Elec-
tron. Comput., EC-14:326-334.

45. Cramer, N.L. (1985). A representation for the adaptive generation of simple
sequential programs, in Proceedings of the International Conference on Genetic
Algorithms and Their Applications, pp. 183-187, Carnegie-Mellon University,
Pittsburgh, PA.

46. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function,
Math. Control Signal Systems, 2:303-314.

260 References

47. Dacorogna, M., Gencay, R., Muller, U. Olsen, R. and Pictet, O. (2001). An
Introduction to High-frequency Finance, New York: Academic Press.

48. Dambolena, I. and Khoury, S. (1980). Ratio stability and corporate failure,
Journal of Finance, 35(4):1017-1026.

49. Darwin, C. (1859). On the Origin of the Species by Means of Natural Selection,
or the Preservation of Favoured Races in the Struggle for Life (reprinted 1985),
London: Penguin Books.

50. Dasgupta, D. and Forrest, S. (1996). Novelty detection in time series data using
ideas from immunology, in Proceedings of ISCA 5th International Conference
on Intelligent Systems, Reno, Nevada, June 19-21, 1996.

51. Deboeck, G. (1994a). Trading on the Edge: Neural, Genetic, and Fuzzy Systems
for Chaotic Financial Markets, New York: John Wiley and Sons.

52. Deboeck G. (1994b). Using GAs to optimise a trading system, in Guido Deboeck
(Ed.), Trading on The Edge: Neural, Genetic and Fuzzy systems for Chaotic
and Financial Markets, New York: John Wiley & Sons Inc.

53. DeBondt, W. and Thaler, R. (1985). Does the stock market overreact?, Journal
of Finance, 40:793-805.

54. DeBondt, W. and Thaler, R. (1987). Further evidence on investor overreaction
and stock market seasonality, Journal of Finance, 42(3):557-581.

55. De Castro, L. and Timmis, J. (editors). (2002). Artificial Immune Systems: A
New Computational Intelligence Approach, London: Springer.

56. De Castro, L. and Von Zuben, F. (2002). Learning and optimization using the
clonal selection principle, IEEE Transactions on Evolutionary Computation,
6(3):239-251.

57. Dempsey, I., O’Neill, M. and Brabazon, A. (2002). Investigations into mar-
ket index trading models using evolutionary automatic programming, in LNAI
2464, Proceedings of the 13th Irish Conference in Artificial Intelligence and
Cognitive Science, pp. 165-170, (Eds.) O’Neill et al., Springer.

58. Dempsey, I., O’Neill, M., and Brabazon, A. (2004). Grammatical constant cre-
ation, in LNCS 3103 Proceedings of the Genetic and Evolutionary Computation
Conference - GECCO 2004, Part 2, pp. 447-458, Seattle WA, USA, Springer.

59. Dempsey, I., O’Neill, M. and Brabazon, A. (2004). Live trading with grammat-
ical evolution, in Proceedings of the Grammatical Evolution Workshop 2004, a
Workshop of the Genetic and Evolutionary Computation Conference, GECCO
2004.

60. Dempsey, I., O’Neill, M., and Brabazon, A. (2005). meta-grammar constant cre-
ation, in Proceedings of the Genetic and Evolutionary Computation Conference
- GECCO 2005, pp. 1665-1672, Washington DC, USA, ACM Press.

61. Dempster, M. and Jones, C. (2001). A real-time adaptive trading system using
genetic programming, Quantative Finance, 1:397-413.

62. Deneubourg, J., Gross, S., Franks, N. Sendova-Franks, A. Detrain, C. and Chre-
tien, L. (1991). The dynamics of collective sorting robot-like ants and ant-
like robots, Proceedings of 1st Conference on Simulation of Adaptive Behavior:
From Animals to Animats (SAB 90), in Meyer, J. and Wilson, S. (eds), 356-365:
MIT Press.

63. Dissanaike, G. (1997). Do stock market investors overreact?, Journal of Busi-
ness Finance & Accounting (UK), 24(1):27-50.

64. Dorigo, M. and DiCaro, G. (1999). Ant colony optimization: a new meta-
heuristic, Proceedings of CEC, vol 2, 1470-1477: IEEE Press.

References 261

65. Dorigo, M. and Gambardella, L. (1997). Ant colonies for the travelling salesman
problem, BioSystems, 43:73-81.

66. Dorigo, M., Maniezzo, V. and Colorni, A. (1996). Ant system: optimization
by a colony of cooperating agents, IEEE Transactions on Systems, Man, And
Cybernetics - Part B: Cybernetics, 26(1):29-41.

67. Easterbrook, F. (1990). Is corporate bankruptcy efficient?, Journal of Financial
Economics, 27(2):411-417.

68. Eberhart, R. Dobbins, R. and Simpson, P. (1996). Computational Intelligence
PC Tools, Boston, MA: Academic Press.

69. Edelman, D. (2001). The Compleat Horseplayer, De Mare Consultants, Aus-
tralia.

70. Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. New
York: Chapman and Hall.

71. Elman, J. (1990). Finding structures in time, Cognitive Science, 14:179-211.
72. Fahlman, S. (1988). Faster-learning variations on back-propagation: An empir-

ical study, (Eds.) T. J. Sejnowski, G. E. Hinton and D. S. Touretzky, 1988
Connectionist Models Summer School, San Mateo, CA, 1988. Morgan Kauf-
mann.

73. Fama, E. (1970). Efficient capital markets: a review of theory and empirical
work, Journal of Finance, Vol. 25(2):383-417.

74. Fama, E. (1998a). Market efficiency, long-term returns, and behavioral finance,
Journal of Financial Economics, 49(3):283-306.

75. Fama, E. (1998b). Efficiency survives the attack of the anomalies, GSB Chicago
Alumni Magazine, (Winter):14-16.

76. Fernandez-Rodriguez, F., Gonzalez-Martel, C. and Sosvilla-Rivero, S. (2000).
On the profitability of technical trading rules based on artificial neural networks:
Evidence from the Madrid stock market, Economics Letters, 69:89-94.

77. Ferris, S., Jayaraman, N. and Makhija, A. (1996). The impact of Chapter 11
filings on the risk and return of security holders, 1979-1989, Advances in Fi-
nancial Economics, 2:93-118.

78. Fitzpatrick, P. (1932). A Comparison of the Ratios of Successful Industrial
Enterprises with Those of Failed Companies, Washington: The Accountants’
Publishing Company.

79. Fogel, D. (2000). Evolutionary Computation: Towards a New Philosophy of
Machine Intelligence, New York: IEEE Press.

80. Forrest, S., Perelson, A. Allen, L. and Cherukuri, R. (1994). Self-nonself dis-
crimination in a computer, in Proceedings of the 1994 IEEE Symposium on
Research in Security and Privacy, IEEE Computer Society Press: Los Alami-
tos, California, 1994, pp. 202-212.

81. Foster, J.A. (2001). Evolutionary computation, Nature Genetics Reviews, Vol.
2, pp. 428-436, June, 2001.

82. Franses, P. and Van Homelen, P. (1998). On forecasting exchange rates using
neural networks, Applied Financial Economics, 8:589-596.

83. Friedberg, R.M. (1958). A Learning Machine: Part 1. IBM J. Research and
Development, 2(1):2-13.

84. Friedberg, R.M., Dunham, B., North, J.H. (1959). A learning machine: Part 2.
IBM J. Research and Development, 3:282-287.

85. Froot, K. and Thaler, R. (1990). Anomalies: foreign exchange, Journal of Eco-
nomic Perspectives, 4(3):179-192.

262 References

86. Gately, E. (1996). Neural Networks for Financial Forecasting, New York: Wiley.
87. Gencay, R., Ballocchi, G., Dacorogna, M., Olsen, R. and Pictet, O. (2002).

Real-time trading models and the statistical properties of foreign exchange
rates, International Economic Review, 43(2):463-491.

88. Gencay, R., Dacorogna, M., Olsen, R. and Pictet, O. (2003). Foreign exchange
trading models and market behavior, Journal of Economic Dynamics & Con-
trol, 27:909-935.

89. Gentry, J., Newbold, P. and Whitford, D. (1985). Classifying bankrupt firms
with funds flow components, Journal of Accounting Research, 23(1):146-160.

90. Glassman, R. (1973). Persistence and loose coupling in living systems, Behav-
ioral Science, 18:83-98.

91. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Boston: Addison-Wesley.

92. Goldberg, D.E. (2002). The Design of Innovation: Lessons from and for Com-
petent Genetic Algorithms, Kluwer Academic Publishers.

93. Goldsby, R., Kindt, T., Kuby, J. and Osborne, B. (2002). Immunology (5th
ed.), New York: W. H. Freeman & Co.

94. Gomez, F. and Miikkulainen, R. (1997). Incremental evolution of complex gen-
eral behavior, Adaptive Behavior, 5:317-342.

95. Gomez, F. (2003). Robust Non-linear control through neuroevolution, PhD the-
sis, University of Texas at Austin, Department of Computer Sciences Technical
Report AI-TR-03-303.

96. Gonzalez, F. and Dasgupta, D. (2003). Anomaly detection using real-valued
negative selection, Genetic Programming and Evolvable Machines, 4(4):383-403.

97. Gonzalez, L. and Cannady, J. (2004). A self-adaptive negative selection ap-
proach for anomaly detection, in Proceedings of the Congress on Evolutionary
Computation 2004, 2: 1561-1568, New Jersey: IEEE Press.

98. Goonatilake, S. and Treleaven, P. (1996). Intelligent Systems for Finance and
Business, Chichester, UK: John Wiley and Sons.

99. Gruau, F. (1994). Neural Network Synthesis Using Cellular Encoding and
the Genetic Algorithm, PhD Thesis, L’Ecole Normale Superieure de Lyon,
l’University Claude Bernard-Lyon.

100. Gudise, V. and Venayagamoorthy, G. (2003). Comparison of particle swarm
optimization and backpropagation as training algorithms for neural networks,
Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS ’03), 110-
117, IEEE Press.

101. Gurney, K. (1997). An introduction to Neural Networks, London: University
College London Press.

102. Hagan, M. and Menhaj, M. (1994). Training feedforward networks with the
Marquardt algorithm, IEEE Transactions on Neural Networks, 5(6):989-993.

103. Hair, J., Anderson, R., Tatham, R. and Black, W. (1998). Multivariate Data
Analysis, Upper Saddle River, New Jersey: Prentice Hall.

104. Hambrick, D. and D’Aveni, R. (1988). Large corporate failures as downward
spirals, Administrative Science Quarterly, 33:1-23.

105. Hancock, P. (1992). Genetic algorithms and permutation problems: a com-
parison of recombination operators for neural net structures, in Proceedings of
COGANN-92 workshop, 108-122, IEEE Press.

106. Hoai, N.X., McKay, R.I.and Abbass, H.A. (2003). Tree adjoining grammars,
language bias, and genetic programming, in LNCS 2610 Genetic Programming,
Proceedings of EuroGP 2003, pp. 340-349, Springer.

References 263

107. Hofmeyer, S. and Forrest, S. (2000). Architecture for an artificial immune sys-
tem, Evolutionary Computation, 8(4), 443-473.

108. Holland, John H. (1975). Adaptation in Natural and Artificial Systems, Michi-
gan: University of Michigan Press.

109. Hong, H., Lim, T. and Stein, J. (1999). Bad news travels slowly: size, analyst
coverage, and the profitability of momentum strategies, Journal of Finance,
55(1):265-295.

110. Hornik, K., Stinchcombe, M. and White, H. (1990). Multi-layered feedforward
neural networks are universal approximators, Neural Networks, 2, 359-366.

111. Horrigan, J. (1965). Some empirical bases of financial ratio analysis, The Ac-
counting Review, July 1965, 558-568.

112. Hu, M., Zhang, G., Jiang, C. and Patuwo, E. (1999). A cross-validation anal-
ysis of neural network out-of-sample performance in exchange rate forecasting,
Decision Sciences, 30(1):197-216.

113. Hu, X., Shi, Y. and Eberhart, R. (2004). Recent advances in particle swarm,
in Proceedings of CEC 2004, pp. 90-97, Portland, Oregon, 19-23 June, 2004,
IEEE Press: New Jersey.

114. Iba H. and Nikolaev N. (2000). Genetic programming polynomial models of
financial data series, in Proc. of CEC 2000, 1459-1466, IEEE Press.

115. Jamal, A. and Sundar, C. (1999). Modelling exchange rates with neural net-
works, Journal of Applied Business Research, 14(1):1-5.

116. Janeway, C., Travers, P., Walport, M. and Shlomchik, M. (2004). Immunobi-
ology (6th ed.), New York: Garland Publishing.

117. Ji, Z. and Dasgupta, D. (2004). Augmented negative selection algorithm with
variable-coverage detectors, in Proceedings of CEC 2004, pp. 1081-1088: IEEE
Press.

118. Kahya, E. and Theodossiou, P. (1996). Predicting corporate financial distress:
A time-Series CUSUM methodology, Review of Quantitative Finance and Ac-
counting, 13:71-93.

119. Kamich, B. (2003). How Technical Analysis Works, New York: New York In-
stitute of Finance.

120. Kantschik, W. and Banzhaf, W. (2002). Linear-graph GP—A new GP Struc-
ture, in LNCS 2278 Genetic Programming, Proceedings of the 5th European
Conference, EuroGP 2002, pp. 83-92, Springer.

121. Kantschik, W., Dittrich, P., Brameier, M. and Banzhaf, W. (2002). Meta-
evolution in graph GP, in LNCS 1598 Genetic Programming, Proceedings of
EuroGP 99, pp. 15-28, Springer.

122. Kaufman, P. (1998). Trading Systems and Methods (3rd ed.), New York: John
Wiley & Sons.

123. Kendall, M. (1953). The analysis of economic time series (part 1), prices, Jour-
nal of the Royal Statistical Society, 96, pp. 11-25.

124. Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization, Proceedings
of the IEEE International Conference on Neural Networks, December 1995, pp.
1942-1948.

125. Kennedy, J. and Eberhart, R. (1997). A discrete binary version of the particle
swarm algorithm, Proceedings of the Conference on Systems, Man and Cyber-
netics, pp. 4104-4109: IEEE Press.

126. Kennedy, J., Eberhart, R. and Shi, Y. (2001). Swarm Intelligence, San Mateo,
California: Morgan Kaufman.

264 References

127. Kitano, H. (1990). Designing neural networks using genetic algorithms with
graph generation, Complex Systems, 4:461-476.

128. Kohonen, T. (1982). Self-organized formation of topologically correct feature
maps, Biological Cybernetics, 43:59-69.

129. Kohonen, T. (1990). The Self-organizing map, Proceedings of the IEEE,
78(9):1464-1480.

130. Kohonen, T. (1998). The SOM Methodology, Visual Explorations in Finance
with Self-organizing Maps, (Eds.) Deboeck, G. and Kohonen, T., pp. 159-167,
Berlin: Springer-Verlag.

131. Koza, J. (1992). Genetic Programming, Massachusetts: MIT Press.
132. Koza, J. (1994). Genetic Programming II, Massachusetts: MIT Press.
133. Koza, J. R., David Andre, Bennett III, F. H. and Keane, M. (1999). Genetic

Programming III: Darwinian Invention and Problem Solving, Morgan Kaufman.
134. Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J. and Lanza,

G. (2003). Genetic Programming IV: Routine Human-Competitive Machine In-
telligence, Kluwer Academic Publishers.

135. Kumar, N., Krovi, R. and Rajagopalan, B. (1997). Financial decision support
with hybrid genetic and neural based modelling tools, European Journal of
Operational Research, 103(2):339-349.

136. Langdon, W.B. and Gustafson, S. (2005). Genetic programming and evolvable
machines: five years of reviews, Genetic Programming and Evolvable Machines,
Vol. 6, No. 2.

137. Langdon, W.B., Gustafson, S. and Koza, J.R. (2004). The Genetic Program-
ming Bibliography, http://liinwww.ira.uka.de/bibliography/Ai/genetic.
programming.html.

138. Langdon, W.B. and Poli, R. (2002). Foundations of Genetic Programming,
Springer-Verlag.

139. Levich, R. and Thomas, L. (1993). The significance of technical trading-rule
profits in the foreign exchange market: a bootstrap approach, Journal of Inter-
national Money and Finance, 12:451-474.

140. Levinthal, D. (1991). Random walks and organizational mortality, Administra-
tive Science Quarterly, 36(3):397-420.

141. Lewin, B. (2000). Genes VII, Oxford University Press.
142. Lintner, G. (1998). Behavioral finance: why investors make bad decisions, The

Planner, 13(1):7-8.
143. Lo, A. and MacKinlay, C. (1999). A Non-random Walk Down Wall Street,

Princeton, New Jersey: Princeton University Press.
144. Lo, A. W., Mamaysky, H. and Wang, J. (2000). Foundations of technical anal-

ysis: computational algorithms, statistical inference, and empirical implemen-
tation, Journal of Finance, 55(4):1705-1765.

145. Lui, Y. and Mole, D. (1998). The use of fundamental and technical analyses by
foreign exchange dealers: Hong Kong evidence, Journal of International Money
and Finance, 17:535-545.

146. Lumer, E. and Faieta, B. (1994). Diversity and adaptation in populations of
clustering ants, Proceedings of Third International Conference on Simulation
of Adaptive Behaviour, pp. 501-508.

147. Manly, Bryan F J. (1994). Multivariate Statistical Methods, London: Chapman
& Hall.

148. Matthews, B.W. (1975). Comparison of the predicited and observed secondary
structure of T4 phage lysozyme, Biochemica et Biophysica Acta., 405:442-451.

References 265

149. Matzinger, P. (1994). Tolerance, danger and the extended family, Annual Re-
view of Immunology, 12:991-1045.

150. Matzinger, P. (2002). The Danger Model: a renewed sense of self, Science,
296(5566):301-305.

151. McRobert, A. and Hoffman, R. (1997). Corporate Collapse: An Early Warning
System for Lenders, Investors and Suppliers, Roseville: NSW, McGraw-Hill
(Australia).

152. Miller, J. and Thomson, P. (2000). Cartesian genetic programming, in LNCS
1802 Genetic Programming, Proceedings of EuroGP 2000, pp.121-132, Springer.

153. Mitchell, M. (1996). An Introduction to Genetic Algorithms, Cambridge, Mas-
sachusetts: MIT Press.

154. Monson, C.K. and Seppi, K.D. (2004). The Kalman Swarm (a new approach
to particle motion in swarm optimization), in LNCS 3102 Proceedings of the
Genetic and Evolutionary Computation Conference-GECCO 2004, Part 1, pp.
140-150, Seattle WA, USA, Springer.

155. Montana, D. and Davis, L. (1989). Training feedforward neural networks using
genetic algorithms, in Proceedings of the 11th International Joint Conference
on Artificial Intelligence, pp. 762-767, Morgan Kaufman.

156. Montier, J. (2002). Behavioural Finance: Insights into Irrational Minds and
Markets, Chichester, UK: Wiley.

157. Moody’s (2000). RiskCalc For Private Companies: Moody’s Default Model,
http://www.riskcalc.moodysrms.com.

158. Morris, R. (1997). Early Warning Indicators of Corporate Failure: A Critical
Review of Previous Research and Further Empirical Evidence, London: Ashgate
Publishing.

159. Moulton, W. and Thomas, H. (1993). Bankruptcy as a deliberate strategy: the-
oretical considerations and empirical evidence, Strategic Management Journal,
14(2):125-135.

160. Murphy, John J. (1999). Technical Analysis of the Financial Markets, New
York: New York Institute of Finance.

161. Neely, C., Weller P. and Dittmar, R. (1997). Is technical analysis in the for-
eign exchange market profitable? A genetic programming approach, Journal of
Financial and Quantitative Analysis, 32(4):405-428.

162. Nordin, P. (1997). Evolutionary Program Induction of Binary Machine Code
and Its Applications, PhD Thesis, Universität Dortmund am Fachbereich In-
formatik.

163. NYSE (2005). Market Information-Quick Reference Sheet, http://www.nyse.
com.

164. NYSE (2005). Market Statistics, http://www.nyse.com.
165. Ohlson, J. (1980). Financial ratios and the probabilistic prediction of

bankruptcy, Journal of Accounting Research, 18:109-131.
166. O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolv-

ing Programs with Grammatical Evolution, PhD thesis, University of Limerick,
Ireland, 2001.

167. O’Neill, M. and Brabazon, A. (2005). mGGA: The meta-Grammar genetic
algorithm, in LNCS 3447 Proceedings of the European Conference on Genetic
Programming-EuroGP 2005, pp. 311-320, Lausanne, Switzerland, Springer.

168. O’Neill, M. and Brabazon, A. (2004). Grammatical swarm, in LNCS 3120
Proceedings of the Genetic and Evolutionary Computation Conference-GECCO
2004, Part 1, pp. 163-174, Seattle, WA, USA. Springer-Verlag.

266 References

169. O’Neill, M., Brabazon, A. and Adley, C. (2004). The automatic generation of
programs for classification problems with grammatical swarm, in Proceedings
of the Congress on Evolutionary Computation-CEC 2004, Vol. 1, pp. 104-110,
Portland, OR, USA. IEEE.

170. O’Neill, M., Brabazon, A., Nicolau, M., McGarraghy, S., Keenan, P. (2004).
πGrammatical Evolution, in LNCS 3103 Proceedings of the Genetic and Evo-
lutionary Computation Conference-GECCO 2004, Part 2, pp. 617-629, Seattle,
WA, USA. Springer-Verlag.

171. O’Neill, M., Brabazon, A., Ryan, C. and Collins J.(2001). Evolving Market
Index Trading Rules Using Grammatical Evolution, In Lecture Notes in Com-
puter Science: Applications of Evolutionary Computing, pp. 343-353, (Eds.) E.
Boers et al., Berlin: Springer.

172. O’Neill, M., Cleary, R. and Nikolov, N. (2004). Solving Knapsack problems with
attribute grammars, in Poli, R. et al. (Eds.) Grammatical Evolution Workshop
2004, Proceedings of the Workshops, Genetic and Evolutionary Computation
Conference GECCO 2004. Seattle, WA, USA, June 2004.

173. O’Neill, M. and Ryan, C. (2001). Grammatical evolution, IEEE Trans. Evolu-
tionary Computation, 5(4):349-358.

174. O’Neill, M. and Ryan, C. (2003). Grammatical Evolution: Evolutionary Auto-
matic Programming in an Arbitrary Language, Boston: Kluwer Academic Pub-
lishers.

175. O’Neill, M. and Ryan, C. (2004). Grammatical evolution by grammatical evo-
lution. The evolution of grammar and genetic code, LNCS 3003. Proc. of the
European Conference on Genetic Programming 2004, pp. 138-149, Coimbra,
Portugal. Springer.

176. O’Neill, M. and Ryan, C. (Eds.) (2002). Grammatical Evolution Workshop
2002, in Barry, A. (Ed.), Proceedings of the Workshops, Genetic and Evolution-
ary Computation Conference GECCO 2002, New York, NY, USA, July 2002.

177. O’Neill, M. and Ryan, C. (Eds.) (2003). Grammatical Evolution Workshop
2003, in Barry, A. (Ed.), Proceedings of the Workshops, Genetic and Evolution-
ary Computation Conference GECCO 2003, Chicago, IL, USA, July 2003.

178. O’Neill, M. and Ryan, C. (Eds.) (2004). Grammatical Evolution Workshop
2004, in Poli, R. et al. (Eds.), Proceedings of the Workshops, Genetic and Evolu-
tionary Computation Conference GECCO 2004, Seattle, WA, USA, June 2004.

179. Osler, C. (2003). Currency orders and exchange rate dynamics: An explanation
for the predictive success of technical analysis, Journal of Finance, 58(5):1791-
1820.

180. Parpinelli, R. and Lopes, H. (2002). Data mining with an ant colony optimiza-
tion algorithm, IEEE Transactions on Evolutionary Computing, 6(4):321-332.

181. Price, K. (1999). An introduction to differential evolution, in New Ideas in
Optimization, eds. Corne, D., Dorigo, M. and Glover, F., pp. 79-108, McGraw-
Hill, London.

182. Pring, M. (1991). Technical Analysis Explained: The Successful Investor’s
Guide to Spotting Investment Trends and Turning Points, New York: McGraw-
Hill.

183. Ramos, V. and Merelo, J. (2002). Self-organized stigmergic document maps:
Environment as a mechanism for context learning, Proceedings of AEB 02, 8-10
February 2002, Merida, Spain.

References 267

184. Refenes, A.N., Bentz, Y., Bunn, D. W., Burgess, A.N. and Zapranis A.D.
(1997). Financial time series modelling with discounted least squares back-
propagation, Neurocomputing, 14:123-138.

185. Rothlauf, F. (2002). Representations for Genetic and Evolutionary Algorithms,
Physica-Verlag.

186. Ruggiero, M. A. (1997). Cybernetic Trading Strategies, New York: Wiley.
187. Rumelhart, D., Hinton, G. and Williams, R. (1986). Learning internal repre-

sentations by back-propagating errors, Nature, 323:533-536.
188. Russel, P., Branch, B. and Torbey, V. (1999). Market valuation of bankrupt

firms: is there an anomaly?, Quarterly Journal of Business and Economics,
38:55-76.

189. Ryan C., Collins J.J. and O’Neill M. (1998). Grammatical evolution: evolving
programs for an arbitrary language, Lecture Notes in Computer Science 1391,
Proceedings of the First European Workshop on Genetic Programming, pp. 83-
95, Springer.

190. Sastry, K., Goldberg, D.E. (2003). Probabilistic model building and competent
genetic programming, Riolo, R.L. and Worzel, B. (Eds.) Genetic Programming
Theory and Practice, pp. 205-220, Kluwer.

191. Schalkoff, R. (1992). Pattern Recognition - Statistical, Structural and Neural
Approaches, New York: Wiley.

192. Schumpeter, J. (1934). The Theory of Economic Development, Cambridge,
MA: Harvard Business Press.

193. Serrano-Cina, C. (1996). Self organizing neural networks for financial diagnosis,
Decision Support Systems, 17(3):227-238.

194. Settles, M., Nathan, P. and Soule, T. (2005). Breeding swarms: A new approach
to recurrent neural network training, in Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2005), Beyer et al. (Eds.), Wash-
ington, USA, June 25-29, 2005, 1:185-192, ACM Press.

195. Shah, J. and Murtaza, M. (2000). A neural network based clustering procedure
for bankruptcy prediction, American Business Review, 18(2):80-86.

196. Shan, Y., McKay, I., Baxter, R., Abbass, H., Essam, D., Nguyen, H. (2004).
Grammar model-based program evolution, in Proceedings of the 2004 IEEE
Congress on Evolutionary Computation, pp. 478-485, IEEE Press.

197. Shefrin, H. (2000). Beyond Greed and Fear: Understanding Behavioral Finance
and the Psychology of Investing, Harvard Business School Press, Boston, USA.

198. Silva, A., Neves, A. and Costa, E. (2002). An empirical comparision of particle
swarm and predator prey optimisation, in Lecture Notes in Artificial Intelli-
gence (2464), Proceedings of AICS 2002, O’Neill et al. (Eds.), pp. 103-110,
Springer.

199. Smith, R. and Winakor, A. (1935). Changes in the Financial Structure of Un-
successful Corporations, University of Illinois, Bureau of Business Research,
Bulletin No. 51.

200. Smith, T. (1992). Accounting for Growth, London: Century Business.
201. Spencer, H. (1864). The Principles of Biology, Volume 1, London and Edin-

burgh: Williams and Norgate.
202. Standard & Poor’s (2002). Standard & Poor’s Rating Services, Statement at

the US SEC Public Hearing on the Role and Function of Credit Rating Agencies
in the US Securities Markets, 15 November 2002.

203. Stanley, K. and Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies, Evolutionary Computation, 10(2):99-127.

268 References

204. Storn, R. and Price, K. (1995). Differential evolution-a simple and efficient
adaptive scheme for global optimization over continuous spaces, Technical Re-
port TR-95-012: International Computer Science Institute, Berkeley, 1995.

205. Storn, R. and Price, K. (1997). Differential evolution-a simple and efficient
heuristic for global optimization over continuous spaces, Journal of Global Op-
timization, 11:341-359.

206. Storn, R. (1999). System design by constraint adaptation and differential evo-
lution, IEEE Transactions on Evolutionary Computation, 3:22-34.

207. Subing, Z. and Zemin, L. (2001). Neural network training using ant algorithm
in ATM traffic control, Proccedings of the IEEE International Symposium on
Circuits and Systems (ISCAS 2001), 2:157-160.

208. Sung, T., Chang, N. and Lee, G. (1999). Dynamics of modelling in data nin-
ing: interpretative approach to bankruptcy prediction, Journal of Management
Information Systems, 16(1):63-85.

209. Svangard, N., Nordin, P., Llyod, S. and Wihlborg, C. (2002). Evolving short-
term trading strategies using Genetic Programming, in Proceedings of CEC
2002, 2006-2010, IEEE Press.

210. Sweeney, R. (1986). Beating the foreign exchange market, Journal of Finance,
41(1):163-182.

211. Taylor, M. and Allen, H. (1992). The use of technical analysis in the foreign
exchange market, Journal of International Money and Finance, 11:304-314.

212. Teller, A. and Veloso, M. (1995). PADO: A new learning architecture for object
recognition, Symbolic Visual Learning, pp. 81-116, Oxford University Press.

213. Thaler, R. (1993). Advances in Behavioural Finance, New York: Russell Sage
Foundation.

214. Thierens, D. (1999). Scalability problems of simple genetic algorithms, Evolu-
tionary Computation, 7(4):331-352.

215. Trigueiros, D. and Taffler, R. J. (1996). Neural networks and empirical research
in accounting, Accounting and Business Research, 26(4):347-355.

216. Vaga, T. (1990). The coherent market hypothesis, Financial Analysts Journal,
46(6):36-49.

217. Varetto, F. (1998). Genetic algorithms in the analysis of insolvency risk, Jour-
nal of Banking and Finance, 22(10):1421-1439.

218. Whigham P.A. (1996). Grammatical bias for evolutionary learning, PhD The-
sis, University of New South Wales, Australian Defence Force Academy.

219. Wilson, N., Chong, K. and Peel, M. (1995). Neural network simulation and
the prediction of corporate outcomes: some empirical findings, International
Journal of the Economics of Business, 2(1):31-50.

220. Wilson, G.C., McIntyre, A. and Heywood, M.I. (2004). Resource review: three
open source systems for evolving programs–Lilgp, ECJ and Grammatical Evo-
lution, Genetic Programming and Evolvable Machines, 5(1):103-105.

221. Wong, B., Lai, V. and Lam, J. (2000). A bibliography of neural network
business applications research: 1994-1998, Computers and Operations Research,
27:1045-1076.

222. Wong, M.L. and Leung, K.S. (2000). Data Mining Using Grammar Based Ge-
netic Programming and Applications, Kluwer Academic Publishers.

223. Yao, J. and Tan, C. (2000). A case study on using neural networks to perform
technical forecasting of forex, Neurocomputing, 34:79-98.

224. Yao, X. (1999). Evolving artifical neural networks, Proceedings of the IEEE,
87(9):1423-1447.

References 269

225. Zhang, J., Martin, E.B., Morris, A.J. and Kiparissides C. (1997). Inferential
estimation of polymer quality using stacked neural networks, Computers and
Chemical Engineering, 21(Supplement):1025-1030.

226. Zirilli, J. (1997). Financial Prediction Using Neural Networks, London: Thom-
son Computer Press.

227. Zmijewski, M. (1984). Methodological issues related to the estimation of finan-
cial distress prediction models, Journal of Accounting Research-Supplement,
59-82.

Index

πGE, 87

adaptive immune system, 108–112
adaptive moving average, 148
adaptive trading system, 194
adenine, 74
affinity, 110
affinity maturation, 111, 114
Akaike’s information criterion (AIC),

129
amino acid, 74
ant algorithms, 99, 229
ant clustering algorithm, 233
ant colony systems, 99–106

ant colony optimisation (ACO),
99–104

ant-foraging, 99–104
antibody, 109, 110, 114–116
antigen, 109, 110, 114, 116
architecture-altering operation, 62
arity, 55
Arms index, 153
artificial immune algorithm (AIA),

113–115
artificial immune system (AIS), 4, 107,

249
artificial neural network, 2, 15–36, 63,

161, 175
asymmetric error function, 123
attribute grammar, 88
auto-catalytic, 100
auto-immune, 112
automatically defined function (ADF),

58–59, 62

automatically defined iteration (ADI),
60–62

automatically defined loop (ADL),
60–62

automatically defined recursion (ADR),
62

automatically defined storage (ADS),
59, 62

B cell, 109, 110, 114
back-testing, 135–140
backpropagation, 16, 21, 24, 25, 27–29,

31, 64
backus naur form (BNF), 76, 79
band-pass filter, 147
behavioural finance, 144, 145
binary PSO, 94
biologically inspired algorithms (BIAs),

1, 10, 37, 63, 107, 121
black box, 36
blast cell, 111
Bollinger bands, 149
bond markets, 239
bond rating, 239–241
bond rating process, 240
breakout, 145, 149
brood-sorting, 105, 229
building block, 65, 70
buy-and-hold, 171, 184, 197

cell membrane, 109
cellular encoding, 67
cellular immunity, 109
cemetery building, 105, 229

272 Index

channel breakout, 149
chromosome, 63, 65
circuit breaker, 140
classification, 34, 107, 114, 116, 251
classification rule, 224
clonal expansion and selection, 111

clonal expansion and selection
algorithm, 114–115

closure, 56, 71
clustering, 32, 229

clustering algorithm, 33–35, 99, 230
co-stimulated, 110
codon, 74, 77–80
codon duplication, 214
coherent market hypothesis, 142
committee decision, 168
competent genetic algorithm, 70, 182
competent genetic programming, 70
competing conventions problem, 66
connection matrix, 66, 68, 69, 176
connection topology, 16
constant creation, 88
constriction coefficient, 92
context layer, 28, 29
context-sensitive grammar, 88
continuous PSO, 90
contrarian strategy, 7
contribution analysis, 180
corporate failure, 219, 220, 229
Cover’s theorem, 29
credit-risk derivative, 240
crossover, 38, 40, 46, 70

in differential evolution, 50–54
in evolving MLPs, 65–66
in genetic programming, 54–55

crowding operators, 48
curse of dimensionality, 128
cytokine, 110, 111
cytosine, 74

danger theory, 112
data audit, 130
data collection, 124–129
data mining, 35
data preprocessing, 130
degenerate genetic code, 76, 84
dendrites, 15
difference vector, 50
differential evolution, 52, 53, 63

differential evolution (DE), 49–52, 54
distributed learning, 99
diversification, 141
diversity, 46–48, 51, 70, 76
DNA, 73, 74, 111
drawdown, 123, 124, 135, 189
dynamic environment, 191

early-stopping, 23
ease-of-movement indicator, 152
efficient market hypothesis (EMH), 6
election operator, 177
elitism, 48
Elman network, 28, 29
emergent, 99
encoding, 40
entry signal, 145
entry strategy, 134, 191, 194
ephemeral random constants (ERCs),

56
epitope, 110
equity curve, 135, 137
error measure, 9
error surface, 22
Euclidean distance, 113, 233, 252
evaporation, 101, 103
evolutionary algorithm, 63, 128
exit signal, 145
exit strategy, 134, 138, 191, 203, 207,

208
explanatory variables, 9
exploitation, 45, 103
exploration, 45, 103
exponential crossover, 49
extended close, 207

fallen angels, 241
fallibility of memory, 191
feedforward, 27–29
financial prediction, 121
fitness, 38, 39, 90, 124, 128, 176
fitness function, 38, 39, 44, 189, 213,

244
fitness-proportionate selection, 45
fixed-length encoding, 54
foreign exchange (forex) markets, 211,

212
fundamental analysis, 126

Index 273

fundamental indicator, 125, 126, 128,
161

gapping, 135, 206
gating mechanism, 141
Gaussian function, 31
gbest, 51, 89, 91, 92
gene, 54
gene-overlapping, 78
generalisation, 23, 26, 32
generalised auto regressive conditional

heteroskedacity (GARCH), 153
generation, 38, 40
generational replacement, 47
genetic algorithm, 63, 65
genetic algorithm (GA), 38, 41, 43, 70,

94, 95, 128, 175, 182
genetic operator, 38
genetic programming (GP), 54, 63, 70,

71, 73, 88
genotype, 43, 64, 176, 177
gradient-descent, 24
grammar, 4, 67, 71, 73, 88, 213
grammatical evolution (GE), 1, 4, 67,

71, 73–88, 105, 183, 203, 211, 219,
239

grammatical evolution by grammatical
evolution, 85

grammatical swarm, 95, 97
Gray code, 44
gray code, 44
guanine, 74

Hamming cliffs, 43
helper T cell, 110, 111
hidden layer, 25, 29
high-frequency time series, 203
HLC (high-low close) chart, 204
humoral immunity, 109, 111
hybrid MLP-GA, 176

immune algorithm, 249
immune system, 4, 108–112
immunoglobulin, 111
index arbitrage, 140
initial weight vector, 25
innate immune system, 108
input space, 28, 30
intermarket data, 161

intermarket indicator, 125, 126
internal state space, 28
intra-day trading, 125, 203
intrinsic polymorphism, 78
intron, 81
intuition test, 139
invalid individual, 79
investment grade bond, 240
island model, 47

jump connection network, 27
junk bond, 240

k-nearest neighbours algorithm, 251

lbest, 91
learning algorithm, 16, 63
learning rate, 22, 24, 34
learning vector quantisation (LVQ), 35
leptokurtotic distribution, 161
leukocyte, 108, 110
Levenberg-Marquardt algorithm, 24
linear discriminant analysis, 224
linear model, 8
linkage learning, 70
lock-in, 100
logistic function, 18
low-frequency time series, 203
low-pass filter, 146
lymph node, 111
lymphocyte, 109, 110

major histocompatibility complex, 109
mapping, 77
market efficiency, 6, 143
market index, 5, 161
Markov chain, 38
Markov process, 38
mean squared error, 23, 123
memory, 38, 89, 100, 194
meta-grammar, 85
migration, 47
minimum description length, 129
modified Stirling ratio, 123
molecular biology, 73
momentum, 24, 146, 148
momentum coefficient, 24
momentum strategy, 7
money management strategy, 134, 135

274 Index

moving average, 70, 131, 146
moving average convergence-divergence

(MACD) oscillator, 147, 164
moving window, 139, 193
multi-layer perceptron (MLP), 16, 63,

65, 67, 95, 105, 161, 164, 168–170,
175, 179, 182

mutation, 38, 40, 43, 46, 116, 177
in differential evolution, 50
in genetic programming, 54

natural selection, 38
negative selection algorithm, 107, 113,

114, 116, 251
neighbourhood function, 34
neurons, 15
neutral evolution, 76
non-self, 108, 111, 113, 249
non-stationary, 35
non-terminal, 74, 76, 78–80
normalisation, 131–133
normalised fitness, 38
nucleotide, 74

objective function, 44
Occam’s razor, 129
one-point crossover, 47, 84
onemax, 41
optimisation, 99, 107
OrgSwarm, 97
oscillator, 146
out-of-sample, 23, 34, 128, 136, 139,

170, 212, 235
outlier, 130, 132
overfitting, 26, 128
overtraining, 23

pairs-trading, 150
paratope, 110
particle, 89, 92
particle swarm algorithm, 51, 96
particle swarm optimisation (PSO),

89–97
pathogen, 108–110, 249
pattern recognition, 249
pbest, 89, 91
peptide, 109
permutation problem, 66
phagocyte, 108

phenotype, 43, 74, 75
pheromone, 99–101, 103, 104
pheromone trail, 99, 101, 103
population, 37, 40
positive feedback, 100
postprocessing of output, 134, 167, 206,

223
predator-prey, 97
predictive horizon, 162
premature convergence, 45, 104
preprocessing, 184
Press’s Q statistic, 224, 244, 245
primary response, 112
principal component analysis (PCA), 32
production rule, 74, 76–80, 87
program trading, 4
protein, 73, 74, 109, 110

quickprop, 65

radial basis function network (RBFN),
29–31

ramped-half-and-half, 56
receptor, 109, 111
recurrent network, 28, 69
recuts, 25
red queen, 137
regularisation, 23
relative strength indicator (RSI), 151
replacement strategy, 47, 178
result-producing branch (RPB), 58
ribonucleic acid (RNA), 74
ripple crossover, 84
risk-adjusted trading return, 123
risk-management, 135
root mean squared error, 123, 169, 177

schema, 47, 48
schema defining length, 48
schema order, 48
schema theorem, 48, 71
Schwarz’s Bayesian Criterion (SBC),

129
screening rule, 128
search engine, 75, 84
secondary response, 112
selection, 38, 39, 177
selection pressure, 45, 46
self, 108, 111, 113, 116, 249

Index 275

self-organisation, 32, 89, 99
self-organising map (SOM), 30, 32, 33,

235
sensitivity, 148
Sharpe ratio, 124
short-term trading, 125
sigmoid transformation, 94
single-point crossover, 177
social algorithms, 49
social insects, 99
social learning, 89, 91
social models, 4
social programming, 96
somatic hypermutation, 111
speciation, 97
stacking, 167–169, 172, 192
standard close, 207
standard deviation, 133
standardised fitness, 38
start symbol, 76, 77
steady state, 47, 79
stigmergy, 99
Stirling ratio, 123
stochastic oscillator, 150
stop-loss, 207
stop-loss trigger, 134, 135
sub-tree crossover, 56
sufficiency, 56
sum of the squared errors, 23
supervised learning, 16, 20, 29, 35
synapses, 15
syntax tree, 54, 55, 57, 73

T cell, 109, 110, 113
take-profit, 207
take-profit trigger, 134, 135, 138
technical analysis, 126, 143–155, 203,

212
technical indicator, 70, 125, 144, 145,

154, 161, 163, 183
terminal, 76, 79
test data, 23
thymus, 112

tick, 203
time-series, 6, 117, 131, 143, 155, 212
tolerisation, 251
tolerogenesis, 112, 113
topology preserving, 32
tournament selection, 45
trading index, 153
trading intent, 124
trading risk, 5
trading rule, 104, 105
trading signal, 70, 134, 206
trading system, 5, 68, 81, 96, 117, 122,

136, 171, 183, 194, 206
trading time-horizon, 124
trading volume, 70
trading volume U, 204
trailing stop, 135
training algorithm, 34
training data, 23, 36
training method, 16
transaction volume, 125
transcription, 87
transfer function, 18, 132, 176
translation, 87
travelling salesman problem (TSP), 100
trend reversal, 145, 146
trigger values, 70, 154
two-point crossover, 46, 47
tyrosine, 74

uniform crossover, 47
universal approximator, 20
unsupervised learning, 16, 32, 35, 235

validation data, 23
value strategy, 7
variable-length, 54, 74
velocity update, 91, 92, 94
volatility, 148
volume data, 152

whipsaw, 148
wrapping operator, 78, 79

Natural Computing Series

W.M. Spears: Evolutionary Algorithms. The Role of Mutation and Recombination.
XIV, 222 pages, 55 figs., 23 tables. 2000

H.-G. Beyer: The Theory of Evolution Strategies. XIX, 380 pages, 52 figs., 9 tables. 2001

L. Kallel, B. Naudts, A. Rogers (Eds.): Theoretical Aspects of Evolutionary Computing.
X, 497 pages. 2001

G. Paun: Membrane Computing. An Introduction. XI, 429 pages, 37 figs., 5 tables. 2002

A.A. Freitas: Data Mining and Knowledge Discovery with Evolutionary Algorithms.
XIV, 264 pages, 74 figs., 10 tables. 2002

H.-P. Schwefel, I. Wegener, K. Weinert (Eds.): Advances in Computational Intelligence.
Theory and Practice. VIII, 325 pages. 2003

A. Ghosh, S. Tsutsui (Eds.): Advances in Evolutionary Computing. Theory and
Applications. XVI, 1006 pages. 2003

L.F. Landweber, E. Winfree (Eds.): Evolution as Computation. DIMACS Workshop,
Princeton, January 1999. XV, 332 pages. 2002

M. Hirvensalo: Quantum Computing. 2nd ed., XI, 214 pages. 2004 (first edition
published in the series)

A.E. Eiben, J.E. Smith: Introduction to Evolutionary Computing. XV, 299 pages. 2003

A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in Living
Cells. Gene Assembly in Ciliates. XIV, 202 pages. 2004

L. Sekanina: Evolvable Components. From Theory to Hardware Implementations.
XVI, 194 pages. 2004

G. Ciobanu, G. Rozenberg (Eds.): Modelling in Molecular Biology. X, 310 pages. 2004

R.W. Morrison: Designing Evolutionary Algorithms for Dynamic Environments.
XII, 148 pages, 78 figs. 2004

R. Paton†, H. Bolouri, M. Holcombe, J.H. Parish, R. Tateson (Eds.): Computation in Cells
 and Tissues. Perspectives and Tools of Thought. XIV, 358 pages, 134 figs. 2004

M. Amos: Theoretical and Experimental DNA Computation. XIV, 170 pages, 78 figs. 2005

M. Tomassini: Spatially Structured Evolutionary Algorithms. XIV, 192 pages, 91 figs.,
21 tables. 2005

G. Ciobanu, G. Paun, M.J. Pérez-Jiménez (Eds.): Applications of Membrane Computing.
X, 441 pages, 99 figs., 24 tables. 2006

K. V. Price, R. M. Storn, J. A. Lampinen: Differential Evolution. XX, 538 pages,
292 figs., 48 tables and CD-ROM. 2006

A. Brabazon, M. O’Neill: Biologically Inspired Algorithms for Financial Modelling.
XVI, 275 pages, 92 figs., 39 tables. 2006

°

°

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

